- 现在受大众喜爱的DeepSeek是如何做到对中文语境理解更深入的?
Helena__a
opencv人工智能
DeepSeek做到对中文语境理解更深入,主要通过以下几种方式:先进的智能分词技术:准确的词汇分割:能够准确地将中文句子分割成独立的词汇。中文语言相较于英文等语言,在词语的组合和分隔上相对复杂,不存在明显的空格等分隔符。DeepSeek的智能分词技术可以依据大量的语言数据和复杂的算法,精准地识别出词语的边界,比如能正确区分“马上出发”中的“马上”是一个时间副词,而“我喜欢骑马”中的“马”是一个单独
- Etcd基本介绍&Raft选举算法
王心澜
etcd大数据运维
目录一、Etcd是什么二、服务发现是什么三、什么是Raft选举算法1.Raft选举算法介绍:2.采用Raft算法选举,集群节点的角色有3种3.Raft选举的流程,可以分为以下几步四:etcd术语一、Etcd是什么①.etcd是一个高度一致的分布式键值(key-value)存储,它提供了一种可靠的方式来存储需要由分布式系统或机器集群访问的数据。它可以优雅地处理网络分区期间的领导者选举,即使在领导者节
- 进击J5:DenseNet+SE-Net实战
Doctor老王
麻醉医生的深度学习之旅深度学习pytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、实验目的:在DenseNet系列算法中插入SE-Net通道注意力机制,并完成猴痘病识别改进思路是否可以迁移到其他地方测试集accuracy到达89%(拔高)二、实验环境:语言环境:python3.8编译器:Jupyternotebook深度学习环境:Pytorchtorch==2.4.0+cu124torchvision==0.19.
- Web数据挖掘及其在电子商务中的研究与应用
赵谨言
论文经验分享毕业设计
标题:Web数据挖掘及其在电子商务中的研究与应用内容:1.摘要随着互联网的飞速发展,Web数据呈现出爆炸式增长,电子商务领域更是积累了海量数据。在此背景下,对Web数据进行有效挖掘并应用于电子商务具有重要意义。本研究旨在探索Web数据挖掘技术在电子商务中的应用方法和价值。通过采用数据挖掘算法、机器学习模型等方法,对电子商务平台的用户行为数据、交易数据等进行深入分析。结果表明,利用Web数据挖掘可以
- 冒泡排序:经典算法的深度解析与TypeScript实现
念九_ysl
算法算法typescript排序算法
/***基础冒泡排序实现(升序)*@paramarr待排序数组*@returns已排序数组*/functionbubbleSortBasic(arr:number[]):number[]{constn=arr.length;for(leti=0;iarr[j+1]){//交换相邻元素[arr[j],arr[j+1]]=[arr[j+1],arr[j]];}}}returnarr;}/***优化版冒
- 【蓝桥杯算法练习】205. 反转字符串中的字符(含思路 + Python / C++ / Java代码)
滴答滴答滴嗒滴
蓝桥杯蓝桥杯算法python
【蓝桥杯算法练习】205.反转字符串中的字符(含思路+Python/C++/Java代码)题目描述给定一个字符串s,请你将字符串中的英文字母字符反转,但其他非字母字符保持在原位置,输出处理后的字符串。示例:输入:s="a-bC-dEf-ghIj"输出:"j-Ih-gfE-dCba"解题思路这道题的关键在于两个点:双指针:从前后同时扫描,只对字母字符进行交换;保留非字母位置:如果当前位置是非字母,跳
- Neuralink API开发指南:用Python读取脑电信号控制智能家居
知识产权13937636601
计算机python智能家居开发语言
一、脑机接口技术演进与Neuralink架构1.1神经信号采集技术突破NeuralinkN1芯片实现四大核心升级:电极密度:1024通道/平方厘米采样率:40KHz全频段采集延迟控制:信号处理延迟<8ms无线传输:LDPC编码抗干扰技术1.2系统架构解析组件技术参数功能描述植入体直径8mm信号采集与预处理信号处理器双核ARMM7实时滤波与特征提取无线模块5.8GHz频段数据加密传输二、开发环境配置
- 基于区块链技术的金融服务的架构设计、关键技术要素的选择、具体应用场景以及未来的发展趋势与挑战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着移动支付、银行卡发行等金融服务的普及,传统商业模式面临越来越多的挑战。其中最重要的是保障用户信息安全的需求,防止个人隐私泄露,保障金融数据的完整性,有效应对各种金融风险,从而实现价值的实现。区块链技术作为一种全新的分布式账本技术已经成为解决这些问题的一种途径。它可以记录所有发生的交易,并通过加密算法将数据不可篡改,确保交易信息真实可靠、完整准确,提供可追溯、
- [2025年最新]关于使用python和Java调用AI大模型
尤物程序猿
pythonjava人工智能
一、AI算法的核心概念与原理AI算法,即人工智能算法,是让计算机模拟人类智能行为、从数据中学习并进行决策的一系列数学方法与规则集合。其核心目标是赋予机器从经验中学习、对未知情况做出合理判断与决策的能力。机器学习是AI算法的重要基础领域,它使计算机能基于数据进行学习并改进性能。监督学习作为机器学习的关键分支,依靠已标记数据进行模型训练。例如在图像分类任务中,为算法提供大量已标注好类别(如“猫”“狗”
- C++ STL常用算法
会思想的苇草i
C++c++算法开发语言stl经验分享
C++STL常用算法STL-常用算法1常用遍历算法1.1for_each1.2transform2常用查找算法2.1find2.2find_if2.3adjacent_find2.4binary_search2.5count2.6count_if3常用排序算法3.1sort3.2random_shuffle3.3merge3.4reverse4常用拷贝和替换算法4.1copy4.2replace4
- 蓝桥杯备考---》贪心算法之矩阵消除游戏
无敌大饺子 dot
贪心算法游戏算法
我们第一次想到的贪心策略一定是找出和最大的行或者列来删除,每次都更新行和列比如如图这种情况,这种情况就不如直接删除两行的多,所以本贪心策略有误so我们可以枚举选的行的情况,然后再贪心的选择列和最大的列来做#include#include#includeusingnamespacestd;intn,m,k;typedeflonglongll;constintN=20;intsum;intcol[N]
- TF-IDF算法及sklearn实现
雪顶猫的鳄
pythontf-idf算法sklearnpython
一、TF-IDF算法介绍TF-IDF(termfrequency-inversedoumentfrequency,词频-逆向文档频率)是一种用于信息检索(informationretrieval)与文本挖掘(textmining)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对与一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比的增加,但同时会
- TF-IDF算法详解
听风Q
NLPtf-idf算法深度学习nlp机器学习
文章目录TF-IDF算法TF-IDF算法介绍TF=>词频(TermFrequency)IDF=>逆向文件频率(InverseDocumentFrequency)TF-IDF实际上是:TF*IDFpython3实现NLTK实现Sklearn实现jiaba实现TF-IDF算法缺点TF-IWF算法TF-IDF算法TF-IDF算法介绍TF-IDF(termfrequency–inversedocument
- 算法之Java动态连通性问题:union-find算法解析
一杯年华@编程空间
算法精讲算法java性能优化
算法之Java动态连通性问题:union-find算法解析在编程的学习旅程中,不断探索新的算法和数据结构是提升能力的关键。今天,我们一起深入研究Java中处理动态连通性问题的union-find算法,从问题的定义、API的设计,到具体的算法实现,希望能和大家共同进步,让我们的编程技能更上一层楼!一、动态连通性问题与union-find算法概述在实际编程场景中,经常会遇到需要判断元素之间连接关系的问
- python以图搜图api_以图搜图(二):python dHash算法
啟潍
python以图搜图api
differentHash算法dHash中文叫差异哈希算法,在对图片进行哈希转换时,通过左右两个像素大小的比较,得到最终哈希序列。相比于aHash算法。dHash速度快,判断效果也要好。实现过程缩小尺寸。将图片缩小为9*8大小,此时照片有72个像素点。灰度化处理。计算差异值,获得最后哈希值(与aHash主要区别处)。比较每行左右两个像素,如果左边的像素比右边的更亮(左边像素值大于右边像素值),则记
- 大模型提示优化|双模型协作优化:迭代效率飙升300%!破局人工试错的智能优化方案
CodePatentMaster
人工智能
颠覆性突破!百度智能提示优化技术让大模型迭代效率提升300%核心价值北京百度网讯科技通过双模型协作优化机制实现提示文本生成效率提升3倍,解决传统Prompt工程人力成本高、评估标准缺失的行业难题。一、技术原理深度剖析痛点定位传统Prompt优化存在三大致命缺陷:人工试错平均耗时72小时/次评估依赖黄金答案标注成本高复杂场景优化成功率不足40%算法突破采用双模型协作架构:LLM1(生成模型)→执行P
- 大模型训练|动态梯度压缩+混合精度架构:显存直降65%、效率飙升300%!攻克显存爆炸与带宽瓶颈
CodePatentMaster
架构
革命性创新!百度自研动态梯度压缩技术让大模型训练效率提升300%核心价值北京百度网讯科技有限公司通过动态梯度压缩算法(DynamicGradientCompression,DGC)与混合精度分布式训练框架,实现训练速度提升300%、显存占用降低65%,解决大模型训练中显存资源浪费与通信带宽瓶颈问题。一、技术原理深度剖析痛点定位当前大模型训练面临两大核心难题:显存占用过高:传统全精度训练(FP32)
- C/C++蓝桥杯算法真题打卡(Day5)
Exhausted、
蓝桥杯c语言c++蓝桥杯
一、P8772[蓝桥杯2022省A]求和-洛谷算法代码:#include//包含标准库中的所有头文件,方便编程usingnamespacestd;//使用标准命名空间,避免每次调用标准库函数时都要加std::intmain(){intn;//声明一个整数变量n,用于存储输入的整数个数cin>>n;//从标准输入读取n的值vectora(n);//声明一个大小为n的整数向量a,用于存储输入的n个整数
- 多智能体协作|动态任务分解算法:复杂任务处理效率飙升200%!突破实时响应瓶颈的异步架构方案
CodePatentMaster
算法架构
颠覆性突破!百度多智能体协作技术让复杂任务处理效率提升200%[核心价值]北京百度网讯科技有限公司通过多智能体异步协作架构实现任务处理效率提升200%,解决大模型时代复杂任务拆解与实时反馈难题一、技术原理深度剖析痛点定位当前智能体技术面临三大挑战:全栈式处理瓶颈:单一智能体处理复杂任务时存在显存占用高、响应延迟大(传统方案延迟>5s)即时信息处理真空:87%的查询类任务需要实时外部验证(如餐厅订座
- 每日一博 - 一致性哈希:分布式系统的数据分配利器
小小工匠
【每日一博】哈希算法一致性哈希
文章目录概述1、一致性哈希算法的诞生背景2、一致性哈希的基本原理3、一致性哈希的优势和挑战4、虚拟节点的引入5、Java代码实现概述在现代分布式系统中,如何高效地将数据分布在多个服务器上,同时保证扩展性和容错性,是一个至关重要的问题。一致性哈希算法(ConsistentHashing)正是为了解决这些挑战而设计的。今天,我们来深入探讨这个经典的分布式算法,包括它的基本原理、优缺点,以及实际应用中的
- 目标检测YOLO实战应用案例100讲-交通目标数据集构建及高性能检测算法研究与应用
林聪木
目标检测YOLO算法
目录前言国内外研究现状目标检测研究现状目标检测数据集研究现状基于深度学习的通用目标检测方法2.1数据集构建2.2基于深度学习的目标检测框架2.2.1双阶段检测算法分析2.2.2YOLO系列单阶段检测算法分析2.3多标签分类检测交通多样化数据集构建3.1交通场景的特点3.2数据集构建准备3.2.1现有数据集特点3.2.2样本数据采集流程3.3基于LabelImg的标注优化工具3.3.1目标预检测功能
- 计算机视觉技术的优势与挑战:深入探讨与未来展望
猿享天开
技术杂汇计算机视觉CV
目录计算机视觉技术的优势与挑战:深入探讨与未来展望计算机视觉技术的优势1.高效处理大量数据2.自动化和高精度3.实时应用4.多领域应用计算机视觉技术的挑战1.数据质量和多样性2.复杂场景和语义理解3.训练数据和算法设计4.隐私与安全问题未来展望1.数据增强与合成2.多模态学习3.轻量化模型4.隐私保护与安全保障结语计算机视觉(ComputerVision,CV)技术是一种利用计算机和算法来模拟和实
- 基于深度学习的烟雾检测系统——YOLOv5、YOLOv8、YOLOv10及UI界面的实现
深度学习YOLO目标检测实战项目
深度学习YOLOui人工智能分类
引言随着科技的进步,深度学习在计算机视觉中的应用得到了广泛的应用,尤其在烟雾检测领域,具有重要的意义。烟雾检测系统不仅有助于火灾的预防与早期发现,还在工业、交通等领域有着广泛的需求。近年来,YOLO(YouOnlyLookOnce)系列目标检测算法的快速发展,为烟雾检测提供了强大的支持。在本篇博客中,我们将深入探讨如何利用YOLOv5、YOLOv8、YOLOv10来构建一个高效的烟雾检测系统,并设
- STL新增内容
越甲八千
【道阻且长C++】【C++STL】c++算法开发语言
文章目录C++11中的STL新增内容容器算法C++14中的STL新增内容容器算法C++17中的STL新增内容容器算法C++20中的STL新增内容容器算法C++11中的STL新增内容容器std::array:这是一个固定大小的数组容器,和原生数组类似,但具备更好的接口与安全性。它在栈上分配内存,大小在编译时确定。#include#includeintmain(){std::arrayarr={1,2
- 计算机视觉算法实战——烟雾检测
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.烟雾检测领域介绍烟雾检测是计算机视觉在公共安全领域的重要应用,它通过分析视频或图像序列中的视觉特征,自动识别烟雾的存在,为火灾预警提供关键技术支持。相比传统基于物理传感器的烟雾探测器,基于视觉的烟雾检测系统具有以下优势:监测范围广:单摄像头可覆盖大面积区域非接触式检测:无需近距离接
- C++位运算精要:高效解题的利器
星途码客
c++算法c++java算法
引言在算法竞赛和底层开发中,位运算(BitManipulation)因其极高的执行效率而广受青睐。它能在O(1)时间复杂度内完成某些复杂操作,大幅优化程序性能。本文系统梳理C++位运算的核心技巧,涵盖基础操作、经典应用、优化策略及实战例题,帮助读者掌握这一高效工具。一、位运算基础1.六大基本操作运算符名称示例(二进制)说明&按位与1010&1100=1000同1为1,否则为0|按位或1010|11
- A10应用优化与高效部署实战
智能计算研究中心
其他
内容概要A10应用优化与高效部署涉及从基础架构设计到资源管理的全流程技术实践。本文将从核心配置原则、部署策略设计、性能调优路径三大维度展开论述,重点剖析负载均衡算法选择、会话保持机制配置、硬件资源动态分配等关键技术环节。通过对比基准测试数据、解读压力场景下的系统响应曲线等方式,系统阐述如何平衡吞吐量与延迟的关系,同时结合自动化编排工具实现部署效率的跃升。文中深度拆解的银行交易系统扩容案例与电商大促
- 模型优化技术演进与行业场景突破
智能计算研究中心
其他
内容概要模型优化技术正经历从算法改进到系统级创新的范式跃迁。随着自动化机器学习(AutoML)与联邦学习技术的成熟,模型开发效率与隐私保护能力显著提升,而模型压缩技术则推动轻量化部署在边缘计算场景中加速落地。与此同时,量子计算为优化算法提供了新的计算维度,MXNet、PyTorch等框架通过动态计算图特性,在医疗影像识别和语音交互领域实现推理速度的突破性进展。技术演进阶段核心技术突破典型应用场景主
- 前沿算法优化与多场景应用实践
智能计算研究中心
其他
内容概要《前沿算法优化与多场景应用实践》围绕算法技术的创新与落地,系统性梳理了从底层理论到场景化落地的关键路径。在基础算法层,量子算法通过叠加态与纠缠态特性突破经典计算瓶颈,联邦学习结合差分隐私与模型聚合技术构建分布式安全框架,生成对抗网络(GAN)则通过生成器与判别器的动态博弈优化图像合成效果。与此同时,可解释性算法通过特征重要性分析与决策树可视化提升模型透明度,超参数调优策略则结合贝叶斯优化与
- 智能模型优化与跨行业应用趋势
智能计算研究中心
其他
内容概要智能模型优化技术正经历多维度的范式突破,从算法架构到部署模式均呈现显著变革。核心演进路径涵盖三大维度:在技术层,自动化机器学习(AutoML)与自适应学习优化技术大幅降低建模门槛,结合超参数优化与正则化方法,实现模型性能与效率的平衡;在架构层,边缘计算与联邦学习推动分布式模型部署,MXNet、PyTorch等框架通过模型压缩与量化技术,适配低功耗设备部署需求;在应用层,医疗诊断、金融预测等
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh ickes@192.168.27.211
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_