引言
学习和研究OR,wishbone是绕不开的问题。本小节就做一个简单的实验,进一步加深对wishbone总线的理解。
6.1 总线timing
请参考官方spec,链接如下:
http://opencores.org/opencores,wishbone
附:
http://blog.csdn.net/column/details/ce123-wishbone.html
6.2 实验内容
一个master,一个slave,master通过wishbone传递数据(两个操作数)给slave,slave做加法运算,将结果传给master。
如图:
6.3 用modelsim emulate 结果,可以看到1 + 2 = 3
6.4 实验code,写blog的编辑器xheditor真是无语了。这个实验的5个.v文件都是分开的,但是这个编辑器非要弄到一起,人工还修改不了。
1>master
//`include "wb_conbus_defines.v" `timescale 1ns / 10ps module my_master_model(clk, rst, adr, din, dout, cyc, stb, sel, we, ack, err, rty); input ack, err, rty; input clk, rst; input [31:0] din; output [31:0] adr; output [31:0] dout; output cyc, stb; output [3:0] sel; output we; //external registers reg [31:0] adr,dout; reg cyc,stb,we; reg [3:0] sel; //internal registers reg [31:0] result; initial begin adr=32'hffff_ffff; dout=32'hxxxx_xxxx; cyc=0; stb=0; sel=4'hx; we=1'hx; result=32'hxxxx_xxxx; #10; end task write_numbers; input [31:0] slave_addr; input [31:0] operd_a,operd_b; begin @(posedge clk); adr=slave_addr; dout=operd_a; cyc=1; stb=1; we=1; @(posedge clk); while(~ack &~err)@(posedge clk); adr=slave_addr+32'h1; dout=operd_b; @(posedge clk); while(~ack &~err)@(posedge clk); @(posedge clk); @(posedge clk); adr=adr+32'h1; we=0; @(posedge clk); while(~ack &~err)@(posedge clk); result=din; cyc=0; stb=0; we=1'bx; adr=32'hxxxx_xxxx; dout=32'hxxxx_xxxx; end endtask always @(result,dout,adr) $display("master model time: %t dout:%h result:%h adr:%h ",$realtime,dout,result,adr); endmodule
2>slave
//`include "wb_conbus_defines.v" `timescale 1ns / 10ps module my_slave_model(clk, rst, adr, din, dout, cyc, stb, sel, we, ack, err, rty); input clk, rst; input [31:0] adr, din; output [31:0] dout; input cyc, stb; input [3:0] sel; input we; output ack, err, rty; //output registers reg [31:0] dout; reg ack; //internal registers reg [31:0]Cal_A,Cal_B; reg [31:0] Result; reg A_Status,B_Status,R_Status; //reg Reslt_Enbl; //reg Oprd_Enbl; //reg Wrt_Continue; assign err=0; assign rty=0; always @(posedge clk) if(rst) begin A_Status<=0; B_Status<=0; Cal_A<=0; Cal_B<=0; end else if(A_Status &B_Status) begin Result<=Cal_A+Cal_B; R_Status<=1'b1; A_Status<=0; B_Status<=0; end else if(cyc & stb & we) begin if(adr==32'h10000000 & !A_Status) begin Cal_A<=din; A_Status<=1'b1; end else if(adr==32'h10000001 & !B_Status) begin Cal_B<=din; B_Status<=1'b1; end end /* always @(posedge clk) if(rst) begin Result<=0; Reslt_Enbl<=0; end else if(Oprd_Enbl) begin Result<=Cal_A+Cal_B; Reslt_Enbl<=1'b1; end */ always @(posedge clk) if(rst) dout<=0; else if(R_Status) begin dout<=Result; R_Status<=0; end always @(posedge clk) if(rst) begin ack<=0; end else if(stb & !ack) begin ack<=!ack; end else if(ack) ack<=0; always @(din,adr,stb,we,cyc,Cal_A,Cal_B,Result) $display("slave model time:%t din:%h adr:%h stb:%b we:%b cyc:%b operd_a: %h operd_b:%h result:%h",$realtime,din,adr,stb,we,cyc,Cal_A,Cal_B,Result); endmodule
3>bus top
///////////////////////////////////////////////////////////////////// //// //// //// WISHBONE Connection Bus Top Level //// //// //// //// //// //// Author: Johny Chi //// //// [email protected] //// //// //// //// //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // Description // 1. Up to 8 masters and 8 slaves share bus Wishbone connection // 2. no priorty arbitor , 8 masters are processed in a round // robin way, // 3. if WB_USE_TRISTATE was defined, the share bus is a tristate // bus, and use less logic resource. // 4. wb_conbus was synthesis to XC2S100-5-PQ208 using synplify, // Max speed >60M , and 374 SLICE if using Multiplexor bus // or 150 SLICE if using tri-state bus. // //`include "wb_conbus_defines.v" `timescale 1ns / 10ps `define dw 32 // Data bus Width `define aw 32 // Address bus Width `define sw `dw / 8 // Number of Select Lines `define mbusw `aw + `sw + `dw +4 //address width + byte select width + dat width + cyc + we + stb +cab , input from master interface `define sbusw 3 // ack + err + rty, input from slave interface `define mselectw 8 // number of masters `define sselectw 8 // number of slavers //`define WB_USE_TRISTATE module wb_conbus_top( clk_i, rst_i, // Master 0 Interface m0_dat_i, m0_dat_o, m0_adr_i, m0_sel_i, m0_we_i, m0_cyc_i, m0_stb_i, m0_ack_o, m0_err_o, m0_rty_o, m0_cab_i, // Master 1 Interface m1_dat_i, m1_dat_o, m1_adr_i, m1_sel_i, m1_we_i, m1_cyc_i, m1_stb_i, m1_ack_o, m1_err_o, m1_rty_o, m1_cab_i, // Master 2 Interface m2_dat_i, m2_dat_o, m2_adr_i, m2_sel_i, m2_we_i, m2_cyc_i, m2_stb_i, m2_ack_o, m2_err_o, m2_rty_o, m2_cab_i, // Master 3 Interface m3_dat_i, m3_dat_o, m3_adr_i, m3_sel_i, m3_we_i, m3_cyc_i, m3_stb_i, m3_ack_o, m3_err_o, m3_rty_o, m3_cab_i, // Master 4 Interface m4_dat_i, m4_dat_o, m4_adr_i, m4_sel_i, m4_we_i, m4_cyc_i, m4_stb_i, m4_ack_o, m4_err_o, m4_rty_o, m4_cab_i, // Master 5 Interface m5_dat_i, m5_dat_o, m5_adr_i, m5_sel_i, m5_we_i, m5_cyc_i, m5_stb_i, m5_ack_o, m5_err_o, m5_rty_o, m5_cab_i, // Master 6 Interface m6_dat_i, m6_dat_o, m6_adr_i, m6_sel_i, m6_we_i, m6_cyc_i, m6_stb_i, m6_ack_o, m6_err_o, m6_rty_o, m6_cab_i, // Master 7 Interface m7_dat_i, m7_dat_o, m7_adr_i, m7_sel_i, m7_we_i, m7_cyc_i, m7_stb_i, m7_ack_o, m7_err_o, m7_rty_o, m7_cab_i, // Slave 0 Interface s0_dat_i, s0_dat_o, s0_adr_o, s0_sel_o, s0_we_o, s0_cyc_o, s0_stb_o, s0_ack_i, s0_err_i, s0_rty_i, s0_cab_o, // Slave 1 Interface s1_dat_i, s1_dat_o, s1_adr_o, s1_sel_o, s1_we_o, s1_cyc_o, s1_stb_o, s1_ack_i, s1_err_i, s1_rty_i, s1_cab_o, // Slave 2 Interface s2_dat_i, s2_dat_o, s2_adr_o, s2_sel_o, s2_we_o, s2_cyc_o, s2_stb_o, s2_ack_i, s2_err_i, s2_rty_i, s2_cab_o, // Slave 3 Interface s3_dat_i, s3_dat_o, s3_adr_o, s3_sel_o, s3_we_o, s3_cyc_o, s3_stb_o, s3_ack_i, s3_err_i, s3_rty_i, s3_cab_o, // Slave 4 Interface s4_dat_i, s4_dat_o, s4_adr_o, s4_sel_o, s4_we_o, s4_cyc_o, s4_stb_o, s4_ack_i, s4_err_i, s4_rty_i, s4_cab_o, // Slave 5 Interface s5_dat_i, s5_dat_o, s5_adr_o, s5_sel_o, s5_we_o, s5_cyc_o, s5_stb_o, s5_ack_i, s5_err_i, s5_rty_i, s5_cab_o, // Slave 6 Interface s6_dat_i, s6_dat_o, s6_adr_o, s6_sel_o, s6_we_o, s6_cyc_o, s6_stb_o, s6_ack_i, s6_err_i, s6_rty_i, s6_cab_o, // Slave 7 Interface s7_dat_i, s7_dat_o, s7_adr_o, s7_sel_o, s7_we_o, s7_cyc_o, s7_stb_o, s7_ack_i, s7_err_i, s7_rty_i, s7_cab_o ); //////////////////////////////////////////////////////////////////// // // Module Parameters // parameter s0_addr_w = 4 ; // slave 0 address decode width parameter s0_addr = 4'h0; // slave 0 address parameter s1_addr_w = 4 ; // slave 1 address decode width parameter s1_addr = 4'h1; // slave 1 address parameter s27_addr_w = 8 ; // slave 2 to slave 7 address decode width parameter s2_addr = 8'h92; // slave 2 address parameter s3_addr = 8'h93; // slave 3 address parameter s4_addr = 8'h94; // slave 4 address parameter s5_addr = 8'h95; // slave 5 address parameter s6_addr = 8'h96; // slave 6 address parameter s7_addr = 8'h97; // slave 7 address //////////////////////////////////////////////////////////////////// // // Module IOs // input clk_i, rst_i; // Master 0 Interface input [`dw-1:0] m0_dat_i; output [`dw-1:0] m0_dat_o; input [`aw-1:0] m0_adr_i; input [`sw-1:0] m0_sel_i; input m0_we_i; input m0_cyc_i; input m0_stb_i; input m0_cab_i; output m0_ack_o; output m0_err_o; output m0_rty_o; // Master 1 Interface input [`dw-1:0] m1_dat_i; output [`dw-1:0] m1_dat_o; input [`aw-1:0] m1_adr_i; input [`sw-1:0] m1_sel_i; input m1_we_i; input m1_cyc_i; input m1_stb_i; input m1_cab_i; output m1_ack_o; output m1_err_o; output m1_rty_o; // Master 2 Interface input [`dw-1:0] m2_dat_i; output [`dw-1:0] m2_dat_o; input [`aw-1:0] m2_adr_i; input [`sw-1:0] m2_sel_i; input m2_we_i; input m2_cyc_i; input m2_stb_i; input m2_cab_i; output m2_ack_o; output m2_err_o; output m2_rty_o; // Master 3 Interface input [`dw-1:0] m3_dat_i; output [`dw-1:0] m3_dat_o; input [`aw-1:0] m3_adr_i; input [`sw-1:0] m3_sel_i; input m3_we_i; input m3_cyc_i; input m3_stb_i; input m3_cab_i; output m3_ack_o; output m3_err_o; output m3_rty_o; // Master 4 Interface input [`dw-1:0] m4_dat_i; output [`dw-1:0] m4_dat_o; input [`aw-1:0] m4_adr_i; input [`sw-1:0] m4_sel_i; input m4_we_i; input m4_cyc_i; input m4_stb_i; input m4_cab_i; output m4_ack_o; output m4_err_o; output m4_rty_o; // Master 5 Interface input [`dw-1:0] m5_dat_i; output [`dw-1:0] m5_dat_o; input [`aw-1:0] m5_adr_i; input [`sw-1:0] m5_sel_i; input m5_we_i; input m5_cyc_i; input m5_stb_i; input m5_cab_i; output m5_ack_o; output m5_err_o; output m5_rty_o; // Master 6 Interface input [`dw-1:0] m6_dat_i; output [`dw-1:0] m6_dat_o; input [`aw-1:0] m6_adr_i; input [`sw-1:0] m6_sel_i; input m6_we_i; input m6_cyc_i; input m6_stb_i; input m6_cab_i; output m6_ack_o; output m6_err_o; output m6_rty_o; // Master 7 Interface input [`dw-1:0] m7_dat_i; output [`dw-1:0] m7_dat_o; input [`aw-1:0] m7_adr_i; input [`sw-1:0] m7_sel_i; input m7_we_i; input m7_cyc_i; input m7_stb_i; input m7_cab_i; output m7_ack_o; output m7_err_o; output m7_rty_o; // Slave 0 Interface input [`dw-1:0] s0_dat_i; output [`dw-1:0] s0_dat_o; output [`aw-1:0] s0_adr_o; output [`sw-1:0] s0_sel_o; output s0_we_o; output s0_cyc_o; output s0_stb_o; output s0_cab_o; input s0_ack_i; input s0_err_i; input s0_rty_i; // Slave 1 Interface output [`aw-1:0] s1_adr_o; input [`dw-1:0] s1_dat_i; output [`dw-1:0] s1_dat_o; output [`sw-1:0] s1_sel_o; output s1_we_o; output s1_cyc_o; output s1_stb_o; output s1_cab_o; input s1_ack_i; input s1_err_i; input s1_rty_i; // Slave 2 Interface input [`dw-1:0] s2_dat_i; output [`dw-1:0] s2_dat_o; output [`aw-1:0] s2_adr_o; output [`sw-1:0] s2_sel_o; output s2_we_o; output s2_cyc_o; output s2_stb_o; output s2_cab_o; input s2_ack_i; input s2_err_i; input s2_rty_i; // Slave 3 Interface input [`dw-1:0] s3_dat_i; output [`dw-1:0] s3_dat_o; output [`aw-1:0] s3_adr_o; output [`sw-1:0] s3_sel_o; output s3_we_o; output s3_cyc_o; output s3_stb_o; output s3_cab_o; input s3_ack_i; input s3_err_i; input s3_rty_i; // Slave 4 Interface input [`dw-1:0] s4_dat_i; output [`dw-1:0] s4_dat_o; output [`aw-1:0] s4_adr_o; output [`sw-1:0] s4_sel_o; output s4_we_o; output s4_cyc_o; output s4_stb_o; output s4_cab_o; input s4_ack_i; input s4_err_i; input s4_rty_i; // Slave 5 Interface input [`dw-1:0] s5_dat_i; output [`dw-1:0] s5_dat_o; output [`aw-1:0] s5_adr_o; output [`sw-1:0] s5_sel_o; output s5_we_o; output s5_cyc_o; output s5_stb_o; output s5_cab_o; input s5_ack_i; input s5_err_i; input s5_rty_i; // Slave 6 Interface input [`dw-1:0] s6_dat_i; output [`dw-1:0] s6_dat_o; output [`aw-1:0] s6_adr_o; output [`sw-1:0] s6_sel_o; output s6_we_o; output s6_cyc_o; output s6_stb_o; output s6_cab_o; input s6_ack_i; input s6_err_i; input s6_rty_i; // Slave 7 Interface input [`dw-1:0] s7_dat_i; output [`dw-1:0] s7_dat_o; output [`aw-1:0] s7_adr_o; output [`sw-1:0] s7_sel_o; output s7_we_o; output s7_cyc_o; output s7_stb_o; output s7_cab_o; input s7_ack_i; input s7_err_i; input s7_rty_i; //////////////////////////////////////////////////////////////////// // // Local wires // wire [`mselectw -1:0] i_gnt_arb; wire [2:0] gnt; reg [`sselectw -1:0] i_ssel_dec; `ifdef WB_USE_TRISTATE wire [`mbusw -1:0] i_bus_m; `else reg [`mbusw -1:0] i_bus_m; // internal share bus, master data and control to slave `endif wire [`dw -1:0] i_dat_s; // internal share bus , slave data to master wire [`sbusw -1:0] i_bus_s; // internal share bus , slave control to master //////////////////////////////////////////////////////////////////// // // Master output Interfaces // // master0 assign m0_dat_o = i_dat_s; assign {m0_ack_o, m0_err_o, m0_rty_o} = i_bus_s & {3{i_gnt_arb[0]}}; // master1 assign m1_dat_o = i_dat_s; assign {m1_ack_o, m1_err_o, m1_rty_o} = i_bus_s & {3{i_gnt_arb[1]}}; // master2 assign m2_dat_o = i_dat_s; assign {m2_ack_o, m2_err_o, m2_rty_o} = i_bus_s & {3{i_gnt_arb[2]}}; // master3 assign m3_dat_o = i_dat_s; assign {m3_ack_o, m3_err_o, m3_rty_o} = i_bus_s & {3{i_gnt_arb[3]}}; // master4 assign m4_dat_o = i_dat_s; assign {m4_ack_o, m4_err_o, m4_rty_o} = i_bus_s & {3{i_gnt_arb[4]}}; // master5 assign m5_dat_o = i_dat_s; assign {m5_ack_o, m5_err_o, m5_rty_o} = i_bus_s & {3{i_gnt_arb[5]}}; // master6 assign m6_dat_o = i_dat_s; assign {m6_ack_o, m6_err_o, m6_rty_o} = i_bus_s & {3{i_gnt_arb[6]}}; // master7 assign m7_dat_o = i_dat_s; assign {m7_ack_o, m7_err_o, m7_rty_o} = i_bus_s & {3{i_gnt_arb[7]}}; assign i_bus_s = {s0_ack_i | s1_ack_i | s2_ack_i | s3_ack_i | s4_ack_i | s5_ack_i | s6_ack_i | s7_ack_i , s0_err_i | s1_err_i | s2_err_i | s3_err_i | s4_err_i | s5_err_i | s6_err_i | s7_err_i , s0_rty_i | s1_rty_i | s2_rty_i | s3_rty_i | s4_rty_i | s5_rty_i | s6_rty_i | s7_rty_i }; //////////////////////////////// // Slave output interface // // slave0 assign {s0_adr_o, s0_sel_o, s0_dat_o, s0_we_o, s0_cab_o,s0_cyc_o} = i_bus_m[`mbusw -1:1]; assign s0_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[0]; // stb_o = cyc_i & stb_i & i_ssel_dec // slave1 assign {s1_adr_o, s1_sel_o, s1_dat_o, s1_we_o, s1_cab_o, s1_cyc_o} = i_bus_m[`mbusw -1:1]; assign s1_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[1]; // slave2 assign {s2_adr_o, s2_sel_o, s2_dat_o, s2_we_o, s2_cab_o, s2_cyc_o} = i_bus_m[`mbusw -1:1]; assign s2_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[2]; // slave3 assign {s3_adr_o, s3_sel_o, s3_dat_o, s3_we_o, s3_cab_o, s3_cyc_o} = i_bus_m[`mbusw -1:1]; assign s3_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[3]; // slave4 assign {s4_adr_o, s4_sel_o, s4_dat_o, s4_we_o, s4_cab_o, s4_cyc_o} = i_bus_m[`mbusw -1:1]; assign s4_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[4]; // slave5 assign {s5_adr_o, s5_sel_o, s5_dat_o, s5_we_o, s5_cab_o, s5_cyc_o} = i_bus_m[`mbusw -1:1]; assign s5_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[5]; // slave6 assign {s6_adr_o, s6_sel_o, s6_dat_o, s6_we_o, s6_cab_o, s6_cyc_o} = i_bus_m[`mbusw -1:1]; assign s6_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[6]; // slave7 assign {s7_adr_o, s7_sel_o, s7_dat_o, s7_we_o, s7_cab_o, s7_cyc_o} = i_bus_m[`mbusw -1:1]; assign s7_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[7]; /////////////////////////////////////// // Master and Slave input interface // `ifdef WB_USE_TRISTATE // input from master interface assign i_bus_m = i_gnt_arb[0] ? {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i, m0_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[1] ? {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i,m1_cyc_i, m1_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[2] ? {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i, m2_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[3] ? {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i, m3_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[4] ? {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i, m4_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[5] ? {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i, m5_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[6] ? {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i, m6_stb_i} : 72'bz ; assign i_bus_m = i_gnt_arb[7] ? {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i} : 72'bz ; // input from slave interface assign i_dat_s = i_ssel_dec[0] ? s0_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[1] ? s1_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[2] ? s2_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[3] ? s3_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[4] ? s4_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[5] ? s5_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[6] ? s6_dat_i: 32'bz; assign i_dat_s = i_ssel_dec[7] ? s7_dat_i: 32'bz; `else always @(gnt , m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i, m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i, m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i, m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i, m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i, m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i, m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i, m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i) case(gnt) 3'h0: i_bus_m = {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i}; 3'h1: i_bus_m = {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i}; 3'h2: i_bus_m = {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i}; 3'h3: i_bus_m = {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i}; 3'h4: i_bus_m = {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i}; 3'h5: i_bus_m = {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i}; 3'h6: i_bus_m = {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i}; 3'h7: i_bus_m = {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i}; default:i_bus_m = 72'b0;//{m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i}; endcase assign i_dat_s = i_ssel_dec[0] ? s0_dat_i : i_ssel_dec[1] ? s1_dat_i : i_ssel_dec[2] ? s2_dat_i : i_ssel_dec[3] ? s3_dat_i : i_ssel_dec[4] ? s4_dat_i : i_ssel_dec[5] ? s5_dat_i : i_ssel_dec[6] ? s6_dat_i : i_ssel_dec[7] ? s7_dat_i : {`dw{1'b0}}; `endif // // arbitor // assign i_gnt_arb[0] = (gnt == 3'd0); assign i_gnt_arb[1] = (gnt == 3'd1); assign i_gnt_arb[2] = (gnt == 3'd2); assign i_gnt_arb[3] = (gnt == 3'd3); assign i_gnt_arb[4] = (gnt == 3'd4); assign i_gnt_arb[5] = (gnt == 3'd5); assign i_gnt_arb[6] = (gnt == 3'd6); assign i_gnt_arb[7] = (gnt == 3'd7); wb_conbus_arb wb_conbus_arb( .clk(clk_i), .rst(rst_i), .req({ m7_cyc_i, m6_cyc_i, m5_cyc_i, m4_cyc_i, m3_cyc_i, m2_cyc_i, m1_cyc_i, m0_cyc_i}), .gnt(gnt) ); ////////////////////////////////// // address decode logic // wire [7:0] m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec; always @(gnt, m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec) case(gnt) 3'h0: i_ssel_dec = m0_ssel_dec; 3'h1: i_ssel_dec = m1_ssel_dec; 3'h2: i_ssel_dec = m2_ssel_dec; 3'h3: i_ssel_dec = m3_ssel_dec; 3'h4: i_ssel_dec = m4_ssel_dec; 3'h5: i_ssel_dec = m5_ssel_dec; 3'h6: i_ssel_dec = m6_ssel_dec; 3'h7: i_ssel_dec = m7_ssel_dec; default: i_ssel_dec = 7'b0; endcase // // decode all master address before arbitor for running faster // assign m0_ssel_dec[0] = (m0_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m0_ssel_dec[1] = (m0_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m0_ssel_dec[2] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m0_ssel_dec[3] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m0_ssel_dec[4] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m0_ssel_dec[5] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m0_ssel_dec[6] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m0_ssel_dec[7] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m1_ssel_dec[0] = (m1_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m1_ssel_dec[1] = (m1_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m1_ssel_dec[2] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m1_ssel_dec[3] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m1_ssel_dec[4] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m1_ssel_dec[5] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m1_ssel_dec[6] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m1_ssel_dec[7] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m2_ssel_dec[0] = (m2_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m2_ssel_dec[1] = (m2_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m2_ssel_dec[2] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m2_ssel_dec[3] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m2_ssel_dec[4] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m2_ssel_dec[5] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m2_ssel_dec[6] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m2_ssel_dec[7] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m3_ssel_dec[0] = (m3_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m3_ssel_dec[1] = (m3_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m3_ssel_dec[2] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m3_ssel_dec[3] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m3_ssel_dec[4] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m3_ssel_dec[5] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m3_ssel_dec[6] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m3_ssel_dec[7] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m4_ssel_dec[0] = (m4_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m4_ssel_dec[1] = (m4_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m4_ssel_dec[2] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m4_ssel_dec[3] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m4_ssel_dec[4] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m4_ssel_dec[5] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m4_ssel_dec[6] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m4_ssel_dec[7] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m5_ssel_dec[0] = (m5_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m5_ssel_dec[1] = (m5_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m5_ssel_dec[2] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m5_ssel_dec[3] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m5_ssel_dec[4] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m5_ssel_dec[5] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m5_ssel_dec[6] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m5_ssel_dec[7] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m6_ssel_dec[0] = (m6_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m6_ssel_dec[1] = (m6_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m6_ssel_dec[2] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m6_ssel_dec[3] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m6_ssel_dec[4] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m6_ssel_dec[5] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m6_ssel_dec[6] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m6_ssel_dec[7] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); assign m7_ssel_dec[0] = (m7_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr); assign m7_ssel_dec[1] = (m7_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr); assign m7_ssel_dec[2] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr); assign m7_ssel_dec[3] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr); assign m7_ssel_dec[4] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr); assign m7_ssel_dec[5] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr); assign m7_ssel_dec[6] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr); assign m7_ssel_dec[7] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr); //assign i_ssel_dec[0] = (i_bus_m[`mbusw -1 : `mbusw - s0_addr_w ] == s0_addr); //assign i_ssel_dec[1] = (i_bus_m[`mbusw -1 : `mbusw - s1_addr_w ] == s1_addr); //assign i_ssel_dec[2] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s2_addr); //assign i_ssel_dec[3] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s3_addr); //assign i_ssel_dec[4] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s4_addr); //assign i_ssel_dec[5] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s5_addr); //assign i_ssel_dec[6] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s6_addr); //assign i_ssel_dec[7] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s7_addr); always @(m0_ssel_dec,s1_dat_o) $display("top model time: %t mo_ssel_dec: %b s1_data_in:%h",$realtime,m0_ssel_dec,s1_dat_o); endmodule
//=====================================================================
4>bus arbiter
///////////////////////////////////////////////////////////////////// //// //// //// General Round Robin Arbiter //// //// //// //// //// //// Author: Rudolf Usselmann //// //// [email protected] //// //// //// //// //// //// Downloaded from: http://www.opencores.org/cores/wb_conmax/ //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000-2002 Rudolf Usselmann //// //// www.asics.ws //// //// [email protected] //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// // // copy from wb_conmax // // // // // //`include "wb_conbus_defines.v" `timescale 1ns / 10ps module wb_conbus_arb(clk, rst, req, gnt); input clk; input rst; input [7:0] req; // Req input output [2:0] gnt; // Grant output //input next; // Next Target /////////////////////////////////////////////////////////////////////// // // Parameters // parameter [2:0] grant0 = 3'h0, grant1 = 3'h1, grant2 = 3'h2, grant3 = 3'h3, grant4 = 3'h4, grant5 = 3'h5, grant6 = 3'h6, grant7 = 3'h7; /////////////////////////////////////////////////////////////////////// // // Local Registers and Wires // reg [2:0] state, next_state; /////////////////////////////////////////////////////////////////////// // // Misc Logic // assign gnt = state; always@(posedge clk or posedge rst) if(rst) state <= #1 grant0; else state <= #1 next_state; /////////////////////////////////////////////////////////////////////// // // Next State Logic // - implements round robin arbitration algorithm // - switches grant if current req is dropped or next is asserted // - parks at last grant // always@(state or req ) begin next_state = state; // Default Keep State case(state) // synopsys parallel_case full_case grant0: // if this req is dropped or next is asserted, check for other req's if(!req[0] ) begin if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; end grant1: // if this req is dropped or next is asserted, check for other req's if(!req[1] ) begin if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; end grant2: // if this req is dropped or next is asserted, check for other req's if(!req[2] ) begin if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; end grant3: // if this req is dropped or next is asserted, check for other req's if(!req[3] ) begin if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; end grant4: // if this req is dropped or next is asserted, check for other req's if(!req[4] ) begin if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; end grant5: // if this req is dropped or next is asserted, check for other req's if(!req[5] ) begin if(req[6]) next_state = grant6; else if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; end grant6: // if this req is dropped or next is asserted, check for other req's if(!req[6] ) begin if(req[7]) next_state = grant7; else if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; end grant7: // if this req is dropped or next is asserted, check for other req's if(!req[7] ) begin if(req[0]) next_state = grant0; else if(req[1]) next_state = grant1; else if(req[2]) next_state = grant2; else if(req[3]) next_state = grant3; else if(req[4]) next_state = grant4; else if(req[5]) next_state = grant5; else if(req[6]) next_state = grant6; end endcase end endmodule//==================================================================================================================
5>top
///////////////////////////////////////////////////////////////////// //// //// //// Top Level Test Bench //// //// //// //// //// //// Author: Rudolf Usselmann //// //// [email protected] //// //// //// //// //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000-2002 Rudolf Usselmann //// //// www.asics.ws //// //// [email protected] //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// // // // rewrite from test the wb_conbus module // // //`include "wb_conbus_defines.v" `timescale 1ns / 10ps module tb_wb_conbus; reg clk; reg rst; // IO Prototypes wire [31:0] m0_data_i; wire [31:0] m0_data_o; wire [31:0] m0_addr_i; wire [3:0] m0_sel_i; wire m0_we_i; wire m0_cyc_i; wire m0_stb_i; wire m0_ack_o; wire m0_err_o; wire m0_rty_o; wire [31:0] s1_data_i; wire [31:0] s1_data_o; wire [31:0] s1_addr_o; wire [3:0] s1_sel_o; wire s1_we_o; wire s1_cyc_o; wire s1_stb_o; wire s1_ack_i; wire s1_err_i; wire s1_rty_i; // Test Bench Variables reg [31:0] wd_cnt; integer error_cnt; integer verbose; // Misc Variables ///////////////////////////////////////////////////////////////////// // // Defines // ///////////////////////////////////////////////////////////////////// // // Simulation Initialization and Start up Section // initial begin $timeformat(-9, 1, " ns", 10); $display("\n\n"); $display("*****************************************************"); $display("* WISHBONE Connection Matrix Simulation started ... *"); $display("*****************************************************"); $display("\n"); `ifdef WAVES $shm_open("waves"); $shm_probe("AS",test,"AS"); $display("INFO: Signal dump enabled ...\n\n"); `endif wd_cnt = 0; error_cnt = 0; clk = 1; rst = 1; verbose = 1; /* repeat(5) @(posedge clk); s0.delay = 1; s1.delay = 1; s2.delay = 1; s3.delay = 1; s4.delay = 1; s5.delay = 1; s6.delay = 1; s7.delay = 1; */ #1; rst = 0; repeat(5) @(posedge clk); // HERE IS WHERE THE TEST CASES GO ... if(1) // Full Regression Run begin $display(" ......................................................"); $display(" : :"); $display(" : Regression Run ... :"); $display(" :....................................................:"); verbose = 0; // test_dp1; // test_rf; // test_arb1; // test_arb2; // test_dp2; m0.write_numbers(32'h1000_0000,32'h0000_0001,32'h0000_0002); end else if(1) // Debug Tests begin $display(" ......................................................"); $display(" : :"); $display(" : Test Debug Testing ... :"); $display(" :....................................................:"); // test_dp2; end repeat(1000) @(posedge clk); $finish; end // End of Initial ///////////////////////////////////////////////////////////////////// // // Clock Generation // always #5 clk = ~clk; ///////////////////////////////////////////////////////////////////// // // Watchdog Counter // always @(posedge clk) if(m0_ack_o ) wd_cnt = 0; else wd_cnt = wd_cnt +1; always @(wd_cnt) if(wd_cnt > 5000000) begin $display("\n*******************************************"); $display("*** ERROR: Watchdog Counter Expired ... ***"); $display("*******************************************\n"); $finish; end ///////////////////////////////////////////////////////////////////// // // IO Monitors // ///////////////////////////////////////////////////////////////////// // // WISHBONE Inter Connect // wb_conbus_top #(4, 4'h0, 4, 4'h1, 4, 4'h2, 4'h3, 4'h4, 4'h5, 4'h6, 4'h7 ) conbus( .clk_i( clk ), .rst_i( rst ), .m0_dat_i( m0_data_i ), .m0_dat_o( m0_data_o ), .m0_adr_i( m0_addr_i ), .m0_sel_i( m0_sel_i ), .m0_we_i( m0_we_i ), .m0_cyc_i( m0_cyc_i ), .m0_stb_i( m0_stb_i ), .m0_ack_o( m0_ack_o ), .m0_err_o( m0_err_o ), .m0_rty_o( m0_rty_o ), .s1_dat_i( s1_data_i ), .s1_dat_o( s1_data_o ), .s1_adr_o( s1_addr_o ), .s1_sel_o( s1_sel_o ), .s1_we_o( s1_we_o ), .s1_cyc_o( s1_cyc_o ), .s1_stb_o( s1_stb_o ), .s1_ack_i( s1_ack_i ), .s1_err_i( s1_err_i ), .s1_rty_i( s1_rty_i ) ); ///////////////////////////////////////////////////////////////////// // // WISHBONE Master Models // my_master_model m0( .clk( clk ), .rst( rst ), .adr( m0_addr_i ), .din( m0_data_o ), .dout( m0_data_i ), .cyc( m0_cyc_i ), .stb( m0_stb_i ), .sel( m0_sel_i ), .we( m0_we_i ), .ack( m0_ack_o ), .err( m0_err_o ), .rty( m0_rty_o ) ); ///////////////////////////////////////////////////////////////////// // // WISHBONE Slave Models // my_slave_model s1( .clk( clk ), .rst( rst ), .adr( s1_addr_o ), .din( s1_data_o ), .dout( s1_data_i ), .cyc( s1_cyc_o ), .stb( s1_stb_o ), .sel( s1_sel_o ), .we( s1_we_o ), .ack( s1_ack_i ), .err( s1_err_i ), .rty( s1_rty_i ) ); //`include "tests.v" endmodule