[LeetCode-119] Pascal's Triangle II(帕斯卡三角形第K行数据)

Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3,
Return [1,3,3,1].

Note:

Could you optimize your algorithm to use only O(k) extra space?

主要找到第K行数据的规律,

杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.杨辉三角形同时对应于二项式定理的系数.n次的二项式系数对应杨辉三角形的n + 1行.例如在中,2次的二项式正好对应杨辉三角形第3行系数 1 2 1.

/**
 * Return an array of size *returnSize.
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* getRow(int rowIndex, int* returnSize) 
{
    if(!returnSize || rowIndex < 0) {
		return NULL;
	}
	int i = 0;
	int *columnArray = (int *)malloc(sizeof(int)*(rowIndex+1));

	if(0 == rowIndex) {
		columnArray[0] =1;
		*returnSize = 1;
		return columnArray;
	}
	columnArray[0] =1;	
	columnArray[1] = rowIndex;
	columnArray[rowIndex] = 1;/*最后一行*/

	for(i=2;i<rowIndex;i++) {
		columnArray[i] = (double)columnArray[i-1]*(rowIndex-(i-1))/i;
	}
	
	*returnSize = rowIndex+1;
	return 	columnArray;	
}

另外一个超时版本

int* getRow(int rowIndex, int* returnSize) 
{
	if(!returnSize || rowIndex < 0) {
		return NULL;
	}
	int i,j = 0;
	int *columnArray = (int *)malloc(sizeof(int)*(rowIndex+1));

	if(0 == rowIndex) {
	  columnArray[0] =1;
	  *returnSize = 1;
	  return columnArray;
	}
	
	int **AllColumnArray = (int **)malloc(sizeof(int)*(rowIndex+1));

	for(i=0;i<=rowIndex;i++) {   /*i:当前行*/
		AllColumnArray[i] = (int *)malloc(sizeof(int)*(i+1));
		
		AllColumnArray[i][0] = 1; /*第一个数为1*/

		for(j=1;j<i;j++) {	/*j:当前的列数*/
			AllColumnArray[i][j] = AllColumnArray[i-1][j-1]+AllColumnArray[i-1][j];
		}
		
		if(i>=1) {
			
			AllColumnArray[i][j] = 1;/*当前最后一个数也为1*/
			
			free(AllColumnArray[i-1]); /*及时释放回系统*/
			AllColumnArray[i-1] = NULL;
		}
		
		AllColumnArray[i][j] = 1;/*当前最后一个数也为1*/
	}
	/*赋值给输出数组*/
	for(j=0;j<=rowIndex;j++) {   /*i:当前行*/
		columnArray[j] = AllColumnArray[i-1][j];
	}
	
	free(AllColumnArray[i-1]);
	AllColumnArray[i-1] = NULL;
	free(AllColumnArray);
	AllColumnArray = NULL;

	*returnSize = rowIndex+1;
	
	return columnArray;	  
}


你可能感兴趣的:(LeetCode)