因为Netty 5还处于测试版,所以选择了目前比较稳定的Netty 4作为学习对象。而且5.0的变化也不像4.0这么大,好多网上的例子都已经过时了。
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
<version>4.0.25.Final</version>
</dependency>
Netty 4服务端的典型用法如下面代码示例所示,核心组件就是EventLoopGroup、ServerBootstrap、Handler等。其中像EventLoopGroup、Channel等都是可以灵活调配的。这里以比较常用的“主从Reactor”+Nio非阻塞为例,分析代码的执行流程。如果没有接触过Netty的话,建议先简单了解一下Reactor模型等知识再学习源码,不然可能会一头雾水。
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
ServerBootstrap b = new ServerBootstrap()
.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.localAddress(port)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new XXXHandler());
}
});
// Bind and start to accept incoming connections.
ChannelFuture f = b.bind(port).sync();
// Wait until the server socket is closed.
f.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
不管用Netty还是其他网络框架,最终都绕不开JDK NIO提供的接口。那直接用NIO可以分为几步呢?
下面就是一段NIO的示例代码,用单线程和一个Selector监控两个Channel的事件。
public static void main(String[] args) throws Exception {
Selector selector = Selector.open();
int[] ports = { 1234, 5678 };
for (int port : ports) {
ServerSocketChannel listenChannel = ServerSocketChannel.open();
listenChannel.socket().bind(new InetSocketAddress("localhost", port));
listenChannel.configureBlocking(false);
listenChannel.register(selector, SelectionKey.OP_ACCEPT);
}
while (true) {
if (selector.select(3000) == 0) {
System.out.print(".");
continue;
}
Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator();
while (keyIter.hasNext()) {
SelectionKey key = keyIter.next();
if (key.isAcceptable()) {
SocketChannel clientChannel = ((ServerSocketChannel) key.channel()).accept();
clientChannel.configureBlocking(false);
clientChannel.register(key.selector(), SelectionKey.OP_READ, ByteBuffer.allocate(32));
}
if (key.isReadable()) {
SocketChannel clientChannel = (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
long bytesRead = clientChannel.read(buffer);
// ...
}
keyIter.remove();
}
}
}
既然Netty也肯定使用NIO,那么下面分析代码流程时也着重看一下Netty是在哪、如何使用NIO的API。
在主流程开始之前,EventLoopGroup构造方法里做了一些预准备的工作。
NioEventLoopGroup继承自MultithreadEventLoopGroup和更上层的MultithreadEventExecutorGroup。其中,EventLoopGroup中指定使用的EventExecutor是NioEventLoop,而MultithreadEventLoopGroup指定了线程数(CPU数*2)和使用的线程工厂是DefaultThreadFactory。
注意:SelectorProvider.provider()始终返回第一次调用创建的SelectorProvider,所以这里调用provider()与后面NioServerSocketChannel中再次调用并不冲突。
// NioEventLoopGroup
public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
this(nThreads, threadFactory, SelectorProvider.provider());
}
@Override
protected EventExecutor newChild(
ThreadFactory threadFactory, Object... args) throws Exception {
return new NioEventLoop(this, threadFactory, (SelectorProvider) args[0]);
}
// MultithreadEventLoopGroup
private static final int DEFAULT_EVENT_LOOP_THREADS;
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", Runtime.getRuntime().availableProcessors() * 2));
}
protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
super(nThreads == 0? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
}
@Override
protected ThreadFactory newDefaultThreadFactory() {
return new DefaultThreadFactory(getClass(), Thread.MAX_PRIORITY);
}
利用这两个子类提供的信息,父类MultithreadEventExecutorGroup创建出NioEventLoop组和EventExecutorChooser。
// MultithreadEventExecutorGroup
protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
if (threadFactory == null) {
threadFactory = newDefaultThreadFactory();
}
children = new SingleThreadEventExecutor[nThreads];
if (isPowerOfTwo(children.length)) {
chooser = new PowerOfTwoEventExecutorChooser();
} else {
chooser = new GenericEventExecutorChooser();
}
for (int i = 0; i < nThreads; i ++) {
try {
children[i] = newChild(threadFactory, args);
} catch (Exception e) {
throw new IllegalStateException("failed to create a child event loop", e);
}
}
}
NioEventLoop也是在构造方法中做了很多工作。它的父类SingleThreadEventExecutor会调用刚才NioEventLoopGroup中的线程工厂创建一个线程,并调用NioEventLoop覆写的run()方法。而run()方法中就是最为关键的事件循环代码,它对NioEventLoop构造方法创建的Selector不断的select()出就绪的事件。
// SingleThreadEventExecutor
protected SingleThreadEventExecutor(
EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {
thread = threadFactory.newThread(new Runnable() {
@Override
public void run() {
try {
SingleThreadEventExecutor.this.run();
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
}
}
});
taskQueue = newTaskQueue();
}
// NioEventLoop
NioEventLoop(NioEventLoopGroup parent, ThreadFactory threadFactory, SelectorProvider selectorProvider) {
super(parent, threadFactory, false);
provider = selectorProvider;
selector = openSelector();
}
private Selector openSelector() {
final Selector selector;
try {
selector = provider.openSelector();
} catch (IOException e) {
throw new ChannelException("failed to open a new selector", e);
}
return selector;
}
@Override
protected void run() {
for (;;) {
try {
if (hasTasks()) {
selectNow();
} else {
select(oldWakenUp);
}
} catch (Throwable t) {
logger.warn("Unexpected exception in the selector loop.", t);
}
}
}
粗看前面的Netty 4代码示例,好像看不出哪里是框架的起点。实际上,当我们调用bind()方法时,这就是整个Netty框架的起点。具体来说,可以分为三步:
// AbstractBootstrap
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.isDone()) {
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
}
}
final ChannelFuture initAndRegister() {
final Channel channel = channelFactory().newChannel();
try {
init(channel);
} catch (Throwable t) {
channel.unsafe().closeForcibly();
}
ChannelFuture regFuture = group().register(channel);
return regFuture;
}
ServerBoostrap根据我们传入channel()方法的NioServerSocketChannel.class,通过反射创建出Channel对象。注意:NioServerSocketChannel是Netty的包装类。真正的NIO Channel是在其构造方法中通过SelectorProvider创建的。
这里Netty没有用之前我们的NIO示例代码中的ServerSocketChannel.open()方法创建Channel,而是使用SelectorProvider。注释里写道是为了避免多个Channel同时创建时open()方法中的竞争条件。
// AbstractBootstrap
public B channel(Class<? extends C> channelClass) {
return channelFactory(new BootstrapChannelFactory<C>(channelClass));
}
private static final class BootstrapChannelFactory<T extends Channel> implements ChannelFactory<T> {
@Override
public T newChannel() {
try {
return clazz.newInstance();
} catch (Throwable t) {
throw new ChannelException("Unable to create Channel from class " + clazz, t);
}
}
}
// NioServerSocketChannel
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {
/** * Use the SelectorProvider to open SocketChannel and so remove * condition in SelectorProvider#provider() which is called by * each ServerSocketChannel.open() otherwise. */
return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException(
"Failed to open a server socket.", e);
}
}
传入父类AbstractNioChannel的构造方法后,父类负责设置成了非阻塞模式。
// AbstractNioChannel
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}
创建完Channel后就可以为其做一些配置了。ServerBootstrap的init()方法会配置Channel的参数和属性,并创建ServerBootstrapAcceptor,它真正地持有workerGroup(childGroup)和我们定制的Handler。
// ServerBootstrap
@Override
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options();
synchronized (options) {
channel.config().setOptions(options);
}
final Map<AttributeKey<?>, Object> attrs = attrs();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
}
ChannelPipeline p = channel.pipeline();
if (handler() != null) {
p.addLast(handler());
}
final EventLoopGroup currentChildGroup = childGroup;
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
}
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new ServerBootstrapAcceptor(
currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
默认情况下,ChannelPipeline里只有head和tail两个默认的Handler,tail是InBoundHandler,head是OutBoundHandler。真正完成主从Reactor交互的自然就是这里加入到Pipeline的ServerBootstrapAcceptor。
// AbstractChannel
protected AbstractChannel(Channel parent) {
this.parent = parent;
unsafe = newUnsafe();
pipeline = new DefaultChannelPipeline(this);
}
// DefaultChannelPipeline
public DefaultChannelPipeline(AbstractChannel channel) {
this.channel = channel;
tail = new TailContext(this);
head = new HeadContext(this);
head.next = tail;
tail.prev = head;
}
完成了Channel和ChannelPipeline的初始化后,就要为Channel注册我们感兴趣的I/O事件了。尽管NIO的API很简单,但Netty中的注册流程还是比较复杂的:
首先,NioEventLoopGroup.register()方法会使用next(),借助EventExecutorChooser从EventExecutor数组中选出一个NioEventLoop,并调用其register()方法。
// MultithreadEventExecutorGroup
@Override
public ChannelFuture register(Channel channel) {
return next().register(channel);
}
// MultithreadEventExecutorGroup
@Override
public EventExecutor next() {
return chooser.next();
}
private final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
@Override
public EventExecutor next() {
return children[childIndex.getAndIncrement() & children.length - 1];
}
}
NioEventLoop继承自SingleThreadEventLoop,它的register()方法会调用NioServerSocketChannel的unsafe工具进行注册。
// SingleThreadEventLoop
@Override
public ChannelFuture register(Channel channel) {
return register(channel, new DefaultChannelPromise(channel, this));
}
@Override
public ChannelFuture register(final Channel channel, final ChannelPromise promise) {
channel.unsafe().register(this, promise);
return promise;
}
AbstractChannel中Unsafe匿名类会将传入的NioEventLoop绑定到当前Channel,最终触发doRegister()子方法完成注册工作。同时在注册完成后,Netty会向ChannelPipeline中发送channelRegistered和channelActive通知,这就是我们获得到的Channel通知的源头。
// AbstractChannel.AbstractUnsafe
protected abstract class AbstractUnsafe implements Unsafe {
/** true if the channel has never been registered, false otherwise */
private boolean neverRegistered = true;
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
}
}
private void register0(ChannelPromise promise) {
try {
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
pipeline.fireChannelRegistered();
if (firstRegistration && isActive()) {
pipeline.fireChannelActive();
}
} catch (Throwable t) {
closeForcibly();
closeFuture.setClosed();
}
}
}
最终终于到了真正实现注册的地方:AbstractNioChannel.doRegister()会将底层JDK的ServerSocketChannel注册到当前绑定的eventLoop持有的Selector上。
// AbstractNioChannel
@Override
protected void doRegister() throws Exception {
try {
selectionKey = javaChannel().register(eventLoop().selector, 0, this);
return;
} catch (CancelledKeyException e) {
// ...
}
}
绑定流程与注册类似,最终都是调用Channel的unsafe()工具类来完成。但区别是注册是从EventLoopGroup开始最终直接调用到Channel,而绑定是从Channel开始,经过了Pipeline中tail和head的处理才调用到Channel的。
// AbstractBootstrap
private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) {
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
}
}
});
}
// AbstractChannelHandlerContext(TailContext)
@Override
public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
final AbstractChannelHandlerContext next = findContextOutbound();
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeBind(localAddress, promise);
}
return promise;
}
// DefaultChannelPipeline.HeadContext
static final class HeadContext extends AbstractChannelHandlerContext implements ChannelOutboundHandler {
@Override
public void bind(
ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
throws Exception {
unsafe.bind(localAddress, promise);
}
}
// AbstractChannel.AbstractUnsafe
protected abstract class AbstractUnsafe implements Unsafe {
@Override
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
closeIfClosed();
return;
}
}
}
// NioServerSocketChannel
@Override
protected void doBind(SocketAddress localAddress) throws Exception {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
至此,Netty服务就算是启动完毕,它已经开始监听端口上的请求了。现在就总结一下整个代码流程比较关键的地方。其实这一大片代码看下来,会发现ServerBootstrap和EventLoopGroup都是在互相配合,真正的核心是它们创建出NioEventLoop组和NioServerSocketChannel。每个NioEventLoop对应一个线程和一个Selector,NioServerSocketChannel会主动注册到某一个NioEventLoop的Selector上,NioEventLoop负责事件轮询。