Hard 动态查找中位数 @CareerCup

用大小堆实现插入O(logn),查询O(1)的算法,注意invariant是大堆的size一定是与小堆相等或者比小堆大一。另外大堆存放所有小等于中位数的值,小堆存放所有大于中位数的值。


package Hard;

import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;


/**
 * Numbers are randomly generated and passed to a method. Write a program to find and maintain the median value as new values are generated.

译文:

随机产生一些数传递给一个函数,写程序找出并维护这些数的中位数。
 *
 */
public class S18_9 {

	static class MaxHeapComparator implements Comparator<Integer>{
        // Comparator that sorts integers from highest to lowest
        @Override
        public int compare(Integer o1, Integer o2) {
        	return o2-o1;
        }
	}
	
	static class MinHeapComparator implements Comparator<Integer>{
        // Comparator that sorts integers from lowest to highest
        @Override
        public int compare(Integer o1, Integer o2) {
            return o1-o2;
        }
	}
	
	private static Comparator<Integer> maxHeapComparator;
    private static Comparator<Integer> minHeapComparator;
    private static PriorityQueue<Integer> maxHeap;		// 大堆里放小于中位数的元素
    private static PriorityQueue<Integer> minHeap;		// 小堆里放大于中位数的元素

    // O(logn)
	public static void addNewNumber(int randomNumber) {
            /* Note: addNewNumber maintains a condition that maxHeap.size() >= minHeap.size() */
            if (maxHeap.size() == minHeap.size()) {		// 当小堆size与大堆相等时,中位数等于(maxHeap.top()+minHeap.top())/2
                if ((minHeap.peek() != null) && randomNumber > minHeap.peek()) {		// 新数比中位数大,所以要放入小堆,但因为大堆的size必须大等于小堆
                    maxHeap.offer(minHeap.poll());			// 所以要先把小堆中最小的元素移到大堆中
                    minHeap.offer(randomNumber);			// 然后再把新数放入小堆
                } else {			// 新数比中位数小或相等,所以放大堆
                    maxHeap.offer(randomNumber);
                }
            }
            else {			// 这种情况必定是大堆的size比小堆多1,则中位数等于maxHeap.top()
                if(randomNumber < maxHeap.peek()){		// 新数比中位数小或相等,所以放大堆
                    minHeap.offer(maxHeap.poll());			// 先把大堆的最大元素转移到小堆
                    maxHeap.offer(randomNumber);			// 然后把新数放入大堆
                }
                else {	// 新数比中位数大,所以放小堆,因为现在大堆的size比小堆多1,所以可以直接放入小堆,无需转移
                    minHeap.offer(randomNumber);
                }
            }
    }

	// O(1)
    public static double getMedian() {
            /* maxHeap is always at least as big as minHeap. So if maxHeap is empty, then minHeap is also. */                
            if (maxHeap.isEmpty()) {
                return 0;
            }
            if (maxHeap.size() == minHeap.size()) {		// 当大小堆size相同时,取平均
                return ((double)minHeap.peek() + (double) maxHeap.peek()) / 2;
            } else {			// 否则大堆size比小堆多1,因此中位数就是大堆的最大值
                /* If maxHeap and minHeap are of different sizes, then maxHeap must have one extra element. Return maxHeap’s top element.*/                        
                return maxHeap.peek();
            } 
    }

    public static void addNewNumberAndPrintMedian(int randomNumber) {
            addNewNumber(randomNumber);
            System.out.println("Random Number = " + randomNumber);
            printMinHeapAndMaxHeap();
            System.out.println("\nMedian = " + getMedian() + "\n");
    }

    public static void printMinHeapAndMaxHeap(){
            Integer[] minHeapArray = minHeap.toArray(new Integer[minHeap.size()]);
            Integer[] maxHeapArray = maxHeap.toArray(new Integer[maxHeap.size()]);

            Arrays.sort(minHeapArray, maxHeapComparator);
            Arrays.sort(maxHeapArray, maxHeapComparator);
            System.out.print("MinHeap =");
            for (int i = minHeapArray.length - 1; i >= 0 ; i--){
            	System.out.print(" " + minHeapArray[i]);
            }
            System.out.print("\nMaxHeap =");
            for (int i = 0; i < maxHeapArray.length; i++){
            	System.out.print(" " + maxHeapArray[i]);
            }
    }

    public static void main(String[] args) {
            int arraySize = 10;
            int range = 7;

            maxHeapComparator = new MaxHeapComparator();
            minHeapComparator = new MinHeapComparator();
            maxHeap = new PriorityQueue<Integer>(arraySize - arraySize/2, maxHeapComparator);
            minHeap = new PriorityQueue<Integer>(arraySize/2, minHeapComparator);
            
            for(int i = 0; i < arraySize; i++) {
                int randomNumber = (int) (Math.random() * (range+1));
                addNewNumberAndPrintMedian(randomNumber);
            }
    }
}


你可能感兴趣的:(Hard 动态查找中位数 @CareerCup)