Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}
map[i,j]表示i到j的最短距离
K是穷举i,j的断点
map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。
定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
O(n^3)
Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单;
缺点:时间复杂度比较高,不适合计算大量数据。
c语言:
#include<fstream>
#define Maxm 501
using namespace std;
ifstream fin("APSP.in");
ofstream fout("APSP.out");
int p,q,k,m;
int Vertex,Line[Maxm];
int Path[Maxm][Maxm],Map[Maxm][Maxm],Dist[Maxm][Maxm];
void Root(int p,int q)
{
if (Path[p][q]>0)
{
Root(p,Path[p][q]);
Root(Path[p][q],q);
}
else
{
Line[k]=q;
k++;
}
}
int main()
{
memset(Path,0,sizeof(Path));
memset(Map,0,sizeof(Map));
memset(Dist,0,sizeof(Dist));
fin >> Vertex;
for(p=1;p<=Vertex;p++)
for(q=1;q<=Vertex;q++)
{
fin >> Map[p][q];
Dist[p][q]=Map[p][q];
}
for(k=1;k<=Vertex;k++)
for(p=1;p<=Vertex;p++)
if (Dist[p][k]>0)
for(q=1;q<=Vertex;q++)
if (Dist[k][q]>0)
{
if (((Dist[p][q]>Dist[p][k]+Dist[k][q])||(Dist[p][q]==0))&&(p!=q))
{
Dist[p][q]=Dist[p][k]+Dist[k][q];
Path[p][q]=k;
}
}
for(p=1;p<=Vertex;p++)
{
for(q=p+1;q<=Vertex;q++)
{
fout << "/n==========================/n";
fout << "Source:" << p << '/n' << "Target " << q << '/n';
fout << "Distance:" << Dist[p][q] << '/n';
fout << "Path:" << p;
k=2;
Root(p,q);
for(m=2;m<=k-1;m++)
fout << "-->" << Line[m];
fout << '/n';
fout << "==========================/n";
}
}
fin.close();
fout.close();
return 0;
}
注解:无法连通的两个点之间距离为0;
Sample Input
7
00 20 50 30 00 00 00
20 00 25 00 00 70 00
50 25 00 40 25 50 00
30 00 40 00 55 00 00
00 00 25 55 00 10 70
00 70 50 00 10 00 50
00 00 00 00 70 50 00
Sample Output
==========================
Source:1
Target 2
Distance:20
Path:1-->2
==========================
==========================
Source:1
Target 3
Distance:45
Path:1-->2-->3
==========================
==========================
Source:1
Target 4
Distance:30
Path:1-->4
==========================
==========================
Source:1
Target 5
Distance:70
Path:1-->2-->3-->5
==========================
==========================
Source:1
Target 6
Distance:80
Path:1-->2-->3-->5-->6
==========================
==========================
Source:1
Target 7
Distance:130
Path:1-->2-->3-->5-->6-->7
==========================
==========================
Source:2
Target 3
Distance:25
Path:2-->3
==========================
==========================
Source:2
Target 4
Distance:50
Path:2-->1-->4
==========================
==========================
Source:2
Target 5
Distance:50
Path:2-->3-->5
==========================
==========================
Source:2
Target 6
Distance:60
Path:2-->3-->5-->6
==========================
==========================
Source:2
Target 7
Distance:110
Path:2-->3-->5-->6-->7
==========================
==========================
Source:3
Target 4
Distance:40
Path:3-->4
==========================
==========================
Source:3
Target 5
Distance:25
Path:3-->5
==========================
==========================
Source:3
Target 6
Distance:35
Path:3-->5-->6
==========================
==========================
Source:3
Target 7
Distance:85
Path:3-->5-->6-->7
==========================
==========================
Source:4
Target 5
Distance:55
Path:4-->5
==========================
==========================
Source:4
Target 6
Distance:65
Path:4-->5-->6
==========================
==========================
Source:4
Target 7
Distance:115
Path:4-->5-->6-->7
==========================
==========================
Source:5
Target 6
Distance:10
Path:5-->6
==========================
==========================
Source:5
Target 7
Distance:60
Path:5-->6-->7
==========================
==========================
Source:6
Target 7
Distance:50
Path:6-->7
==========================
Matlab源代码为
%floyd算法通用程序,输入a为赋权邻接矩阵
%输出为距离矩阵D,和最短路径矩阵path
function [D,path]=floyd(a)
n=size(a,1);
D=a;
path=zeros(n,n);
for i=1:n
for j=1:n
if D(i,j)~=inf
path(i,j)=j;
end
end
end
for k=1:n
for i=1:n
for j=1:n
if D(i,k)+D(k,j)<D(i,j)
D(i,j)=D(i,k)+D(k,j);
path(i,j)=path(i,k);
end
end
end
end
%配合floyd算法的后续程序,s为源点,t为宿点
%L为长度,R为路由
function [L,R]=router(D,path,s,t)
L=zeros(0,0);
R=s;
while 1
if s==t
L=fliplr(L);
L=[0,L];
L=L(end);
return
end
L=[L,D(s,t)];
R=[R,path(s,t)];
s=path(s,t);
if s==0
return
end
end
在M文件中建立
pascal语言:
program floyd;
var
st,en,f:integer;
n,i,j,x:integer;
a:array[1..10,1..10]of integer;
path,map1,map2:array[1..10,1..10]of integer;
begin
readln(n);
for i:=1 to n do
begin
for j:=1 to n do
begin
read(a[i,j]);
path[i,j]:=j;
end;
readln;
end;
for x:=1 to n do
for i:=1 to n do
for j:=1 to n do
if a[i,j]>a[i,x]+a[x,j] then
begin
a[i,j]:=a[i,x]+a[x,j];
path[i,j]:=path[i,x];
end;
readln(st,en);
writeln(a[st,en]);
writeln;
f:=st;
while f<> en do
begin
write(f);
write('-->');
f:=path[f,en];
end;
write(en);
end.