c++产生随机数

C++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。

在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;

int main()
{
    double random(double,double);
    srand(unsigned(time(0)));
    for(int icnt = 0; icnt != 10; ++icnt)
        cout << "No." << icnt+1 << ": " << int(random(0,10))<< endl;
    return 0;
}

double random(double start, double end)
{
    return start+(end-start)*rand()/(RAND_MAX + 1.0);
}
/* 运行结果
* No.1: 3
* No.2: 9
* No.3: 0
* No.4: 9
* No.5: 5
* No.6: 6
* No.7: 9
* No.8: 2
* No.9: 9
* No.10: 6
*/
利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <iomanip>
using namespace std;

int main()
{
    double random(double,double);
    int a[10] = {0};
    const int Gen_max = 10000000;
    srand(unsigned(time(0)));
   
    for(int icnt = 0; icnt != Gen_max; ++icnt)
        switch(int(random(0,10)))
        {
        case 0: a[0]++; break;
        case 1: a[1]++; break;
        case 2: a[2]++; break;
        case 3: a[3]++; break;
        case 4: a[4]++; break;
        case 5: a[5]++; break;
        case 6: a[6]++; break;
        case 7: a[7]++; break;
        case 8: a[8]++; break;
        case 9: a[9]++; break;
        default: cerr << "Error!" << endl; exit(-1);
        }
   
    for(int icnt = 0; icnt != 10; ++icnt)
        cout << icnt << ": " << setw(6) << setiosflags(ios::fixed) << setprecision(2) << double(a[icnt])/Gen_max*100 << "%" << endl;
   
    return 0;
}

double random(double start, double end)
{
    return start+(end-start)*rand()/(RAND_MAX + 1.0);
}
/* 运行结果
* 0: 10.01%
* 1:   9.99%
* 2:   9.99%
* 3:   9.99%
* 4:   9.98%
* 5: 10.01%
* 6: 10.02%
* 7: 10.01%
* 8: 10.01%
* 9:   9.99%
*/
可知用这种方法得到的随机数是满足统计规律的。

你可能感兴趣的:(c++产生随机数)