OpenCV集成的东西越来越多了,不用费劲去配置很多环境,这点还是挺方便的,原来一直用SVM进行分类,最近了研究一下使用SVM进行回归,发现还是很好用的。
下面就用OpenCV的SVM工具对Sinc函数的样本进行回归,代码比较简单,效果还不错。
本文为原创,转载请注明,本文地址:http://blog.csdn.net/houston11235/article/details/9023229。
从Sinc函数获得的样本点如下图所示,这是没有噪声时候的情形(Data without noise)
加入噪声之后的样本如下图(Add noise to data)
使用SVM进行回归之后的结果如下图(Result)
最后附上源代码,其中的参数设置参考了以下链接:http://dlib.net/svr_ex.cpp.html
// draw some samples from sinc function and do a non-linear regression #include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; // the sinc function float sinc(float x) { return static_cast<float>( x==0 ? 1.0 : sin(x) / x ); } int main(int argc, char* argv[]) { RNG rng; int ndata = 10; Mat traindata(ndata, 1, CV_32FC1); // train data Mat label(ndata, 1, CV_32FC1); // train response for (int i = 0; i < ndata; ++i) { traindata.at<float>(i, 0) = static_cast<float>(i); float noise = static_cast<float>(rng.gaussian(0.1)); //noise = 0.0; // uncomment to eliminate the noise label.at<float>(i, 0) = static_cast<float>(sinc(i) + noise); } // show the train data int width = 500; int height = 500; Mat canvas(height, width, CV_8UC3, Scalar(0,0,0)); double minV; double maxV; Point minId; Point maxId; minMaxLoc(traindata, &minV, &maxV, &minId, &maxId); float X_shift = static_cast<float>(minV); float X_ratio = static_cast<float>(width) / static_cast<float>(maxV - minV); minMaxLoc(label, &minV, &maxV, &minId, &maxId); float Y_shift = static_cast<float>(minV); float Y_ratio = static_cast<float>(height) / static_cast<float>(maxV - minV); for (int idx = 0; idx < traindata.rows; ++idx) { float x = (traindata.at<float>(idx, 0) - X_shift) * X_ratio; float y = static_cast<float>(height) - (label.at<float>(idx, 0) - Y_shift) * Y_ratio; circle(canvas, Point2f(x, y), 3, Scalar(0,0,255), -1); } imshow("train", canvas); //imwrite("train_noise.png", canvas); CvSVMParams param; param.svm_type = CvSVM::EPS_SVR; param.kernel_type = CvSVM::RBF; param.C = 5; param.p = 1e-3; param.gamma = 0.1; CvSVM regresser; regresser.train(traindata, label, Mat(), Mat(), param); // predict the responses of the samples and show them for (float i = 0; i < 10; i+=0.23f) { Mat sample(1,1, CV_32FC1); sample.at<float>(0, 0) = static_cast<float>(i); float response = regresser.predict(sample); //cout<<response<<endl; float x = (sample.at<float>(0, 0) - X_shift) * X_ratio; float y = static_cast<float>(height) - (response - Y_shift) * Y_ratio; circle(canvas, Point2f(x, y), 3, Scalar(0,255,0), -1); } imshow("predict", canvas); //imwrite("regress.png", canvas); waitKey(0); return 0; }