转自:http://blog.csdn.net/heyutao007/article/details/5890103,红色字体为针对原博文察看源码所添加的理解内容
mr自带的例子中的源码SecondarySort,我重新写了一下,基本没变。
这个例子中定义的map和reduce如下,关键是它对输入输出类型的定义:(java泛型编程)
public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable>
public static class Reduce extends Reducer<IntPair, NullWritable, IntWritable, IntWritable>
1 首先说一下工作原理:
在map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。本例子中使用的是TextInputFormat,他提供的RecordReder会将文本的一行的行号作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。然后调用自定义Map的map方法,将一个个<LongWritable, Text>对输入给Map的map方法。注意输出应该符合自定义Map中定义的输出<IntPair, IntWritable>。最终是生成一个List<IntPair, IntWritable>。在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass设置key比较函数类,则使用key的实现的compareTo方法。在第一个例子中,使用了IntPair实现的compareTo方法,而在下一个例子中,专门定义了key比较函数类。
在reduce阶段,reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。然后开始构造一个key对应的value迭代器。这时就要用到分组,使用jobjob.setGroupingComparatorClass设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。
跟踪源码发现,Reduce中的Context继承自ReduceContext,ReduceContext的public boolean nextKey() 是通过判断hasMore && nextKeyIsSame,而对hasMore 和 nextKeyIsSame修改的方法是public boolean nextKeyValue(),该方法中通过
hasMore = input.next(); if (hasMore) { next = input.getKey(); nextKeyIsSame = comparator.compare(currentRawKey.getBytes(), 0, currentRawKey.getLength(), next.getData(), next.getPosition(), next.getLength() - next.getPosition() ) == 0; } else { nextKeyIsSame = false; }
hasMore = input.next() 中会使用ReduceContext构造方法中传入的comparator对象,而生成ReduceContext对象的是ReduceTask中的如下代码:
RawComparator comparator = job.getOutputValueGroupingComparator(); if (useNewApi) { runNewReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass);
在runNewReducer()中有如下代码:
org.apache.hadoop.mapreduce.Reducer.Context reducerContext = createReduceContext(reducer, job, getTaskID(), rIter, reduceInputKeyCounter, reduceInputValueCounter, trackedRW, committer, reporter, comparator, keyClass, valueClass);
createReduceContext代码如下:
protected static <INKEY,INVALUE,OUTKEY,OUTVALUE> org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context createReduceContext(org.apache.hadoop.mapreduce.Reducer <INKEY,INVALUE,OUTKEY,OUTVALUE> reducer, Configuration job, org.apache.hadoop.mapreduce.TaskAttemptID taskId, RawKeyValueIterator rIter, org.apache.hadoop.mapreduce.Counter inputKeyCounter, org.apache.hadoop.mapreduce.Counter inputValueCounter, org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> output, org.apache.hadoop.mapreduce.OutputCommitter committer, org.apache.hadoop.mapreduce.StatusReporter reporter, RawComparator<INKEY> comparator, Class<INKEY> keyClass, Class<INVALUE> valueClass ) throws IOException, ClassNotFoundException { try { return contextConstructor.newInstance(reducer, job, taskId, rIter, inputKeyCounter, inputValueCounter, output, committer, reporter, comparator, keyClass, valueClass); } catch (InstantiationException e) { throw new IOException("Can't create Context", e); } catch (InvocationTargetException e) { throw new IOException("Can't invoke Context constructor", e); } catch (IllegalAccessException e) { throw new IOException("Can't invoke Context constructor", e); } }contextConstructor为反射出的Constructor object
private static final Constructor<org.apache.hadoop.mapreduce.Reducer.Context> contextConstructor; static { try { contextConstructor = org.apache.hadoop.mapreduce.Reducer.Context.class.getConstructor (new Class[]{org.apache.hadoop.mapreduce.Reducer.class, Configuration.class, org.apache.hadoop.mapreduce.TaskAttemptID.class, RawKeyValueIterator.class, org.apache.hadoop.mapreduce.Counter.class, org.apache.hadoop.mapreduce.Counter.class, org.apache.hadoop.mapreduce.RecordWriter.class, org.apache.hadoop.mapreduce.OutputCommitter.class, org.apache.hadoop.mapreduce.StatusReporter.class, RawComparator.class, Class.class, Class.class}); } catch (NoSuchMethodException nme) { throw new IllegalArgumentException("Can't find constructor"); } }可以发现ReduceContext中的comparator是设置的GroupingComparator
2 二次排序就是首先按照第一字段排序,然后再对第一字段相同的行按照第二字段排序,注意不能破坏第一次排序的结果 。例如
输入文件
20 21
50 51
50 52
50 53
50 54
60 51
60 53
60 52
60 56
60 57
70 58
60 61
70 54
70 55
70 56
70 57
70 58
1 2
3 4
5 6
7 82
203 21
50 512
50 522
50 53
530 54
40 511
20 53
20 522
60 56
60 57
740 58
63 61
730 54
71 55
71 56
73 57
74 58
12 211
31 42
50 62
7 8
输出:(注意需要分割线)
------------------------------------------------
1 2
------------------------------------------------
3 4
------------------------------------------------
5 6
------------------------------------------------
7 8
7 82
------------------------------------------------
12 211
------------------------------------------------
20 21
20 53
20 522
------------------------------------------------
31 42
------------------------------------------------
40 511
------------------------------------------------
50 51
50 52
50 53
50 53
50 54
50 62
50 512
50 522
------------------------------------------------
60 51
60 52
60 53
60 56
60 56
60 57
60 57
60 61
------------------------------------------------
63 61
------------------------------------------------
70 54
70 55
70 56
70 57
70 58
70 58
------------------------------------------------
71 55
71 56
------------------------------------------------
73 57
------------------------------------------------
74 58
------------------------------------------------
203 21
------------------------------------------------
530 54
------------------------------------------------
730 54
------------------------------------------------
740 58
3 具体步骤:
(1)自定义key
在mr中,所有的key是需要被比较和排序的,并且是二次,先根据partitione,再根据大小。而本例中也是要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair,他有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。
所有自定义的key应该实现接口WritableComparable,因为是可序列的并且可比较的。并重载方法:
(2)由于key是自定义的,所以还需要自定义一下类:
(2.1)分区函数类。这是key的第一次比较。
在job中使用setPartitionerClasss设置Partitioner。
(2.2)key比较函数类。这是key的第二次比较。这是一个比较器,需要继承WritableComparator。
必须有一个构造函数,并且重载 public int compare(WritableComparable w1, WritableComparable w2)
另一种方法是 实现接口RawComparator。
在job中使用setSortComparatorClass设置key比较函数类。
(2.3)分组函数类。在reduce阶段,构造一个key对应的value迭代器的时候,只要first相同就属于同一个组,放在一个value迭代器。这是一个比较器,需要继承WritableComparator。
分组函数类也必须有一个构造函数,并且重载 public int compare(WritableComparable w1, WritableComparable w2)
分组函数类的另一种方法是实现接口RawComparator。
在job中使用setGroupingComparatorClass设置分组函数类。
另外注意的是,如果reduce的输入与输出不是同一种类型,则不要定义Combiner也使用reduce,因为Combiner的输出是reduce的输入。除非重新定义一个Combiner。
3 代码。
这个例子中没有使用key比较函数类,而是使用key的实现的compareTo方法。