机器学习实战之朴素贝叶斯

from numpy import *

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set()
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet) 

def setOfWords2Vec(vocabList,inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print "the word: %s is not in my Vocabulary!" % word
    return returnVec

def trainNB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
#     p0Num = zeros(numWords)
#     p1Num = zeros(numWords)
#     p0Denom = 0.0
#     p1Denom = 0.0
    
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)
#     print sum(p1Num),p1Denom
    p0Vect = log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive

def classifyNB(vec2Classify, p0Vec, p1Vec,pClass1):
    p1 = sum(vec2Classify*p1Vec) + log(pClass1)  #after the log operation,the multiply change to add operation
    p0 = sum(vec2Classify*p0Vec) + log(1-pClass1)
    return 1 if p1>p0 else 0
        
def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0v,p1v,pab = trainNB0(trainMat, listClasses)
    testEntity = ['love','my','dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntity))
    print testEntity, 'classifiied as:',classifyNB(thisDoc, p0v, p1v, pab)
    testEntity = ['stupid','garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntity))
    print testEntity, 'classifiied as:',classifyNB(thisDoc, p0v, p1v, pab)
    
def bagOfWord2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def textParse(bigString):
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok)>2]

def spamTest():
    docList=[];classList=[];fullText=[]
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = range(50);testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = [];trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0v,p1v,pSpam = trainNB0(trainMat, trainClasses)
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(wordVector, p0v, p1v, pSpam)!=classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ',float(errorCount)/len(testSet)
    
def calcMostFreq(vocabList, fullText):
    pass
      
if __name__ == '__main__':
    spamTest()
    import feedparser
    ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
    print len(ny['entries'])

你可能感兴趣的:(python,机器学习,贝叶斯)