hive基本命令

转自:http://www.aboutyun.com/forum.php?mod=viewthread&tid=8592&highlight=hive

问题导读
1、如何加载分区表数据?
2、Hive中如何查询使用多少个MapReduce作业 ?
3、查看数组、map、结构?

创建表:
  1. hive> CREATE TABLE pokes (foo INT, bar STRING);         
  2. Creates a table called pokes with two columns, the first being an integer and the other a string
复制代码

创建一个新表,结构与其他一样 
  1. hive> create table new_table like records;
复制代码

创建分区表: 
  1. hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);
复制代码


加载分区表数据: 
  1. hive> load data local inpath '/home/hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');
复制代码


展示表中有多少分区: 
  1. hive> show partitions logs;
复制代码


展示所有表: 
  1. hive> SHOW TABLES;         
  2. lists all the tables hive> SHOW TABLES '.*s';

  3. lists all the table that end with 's'. The pattern matching follows Java regular expressions. Check out this link for documentation http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
复制代码


显示表的结构信息 
  1. hive> DESCRIBE invites;         
  2. shows the list of columns
复制代码


更新表的名称: 
  1. hive> ALTER TABLE source RENAME TO target;
复制代码


添加新一列
  1. hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');   
复制代码


删除表:
  1. hive> DROP TABLE records;
复制代码


删除表中数据,但要保持表的结构定义
  1. hive> dfs -rmr /user/hive/warehouse/records;
复制代码

从本地文件加载数据: 
  1. hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;
复制代码


显示所有函数:
  1. hive> show functions;
复制代码


查看函数用法:
  1. hive> describe function substr;
复制代码


查看数组、map、结构 
  1. hive> select col1[0],col2['b'],col3.c from complex;
复制代码


内连接:
  1. hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
复制代码


查看hive为某个查询使用多少个MapReduce作业 
  1. hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
复制代码


外连接: 
  1. hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
复制代码


in查询:Hive不支持,但可以使用LEFT SEMI JOIN 
  1. hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
复制代码


Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作 
  1. hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
复制代码


INSERT OVERWRITE TABLE ..SELECT:新表预先存在 
  1. hive> FROM records2     > INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year     
  2. > INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year     
  3. > INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;  
复制代码


CREATE TABLE ... AS SELECT:新表表预先不存在 
  1. hive>CREATE TABLE target AS SELECT col1,col2 FROM source;
复制代码


创建视图: 
  1. hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
复制代码


查看视图详细信息:
  1. hive> DESCRIBE EXTENDED valid_records;
复制代码

你可能感兴趣的:(hive基本命令)