比赛时看题了,但是没有思路。比赛结束后这题总共通过20+,赛后看这个解题报告,由于博主说得太简洁,而我又是从来没有见过这种dp求数学期望的题,所以研究了好久都木有明白。只有搜索一下【dp求期望】的题目,从简单的开始入手,费了老大功夫,终于搞懂了,于是写下详细解题报告。
如果感觉这个题看不懂,也可以按照我的步骤来看:Poj 2096 --> Zoj 3329 --> Hdu 4035
/** dp求期望的题。 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 (概率为ei) 3.和该点相连有m条边,随机走一条 求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点: E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1); = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数) E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) ); = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则 ∑(E[child[i]]) = ∑E[j] = ∑(Aj*E[1] + Bj*E[father[j]] + Cj) = ∑(Aj*E[1] + Bj*E[i] + Cj) 带入上面的式子得 (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj; 由此可得 Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj); Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj); Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点 Ai = ki; Bi = 1 - ki - ei; Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1; 所以 E[1] = C1 / (1 - A1); 若 A1趋近于1则无解... **/ #include <cstdio> #include <iostream> #include <vector> #include <cmath> using namespace std; const int MAXN = 10000 + 5; double e[MAXN], k[MAXN]; double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa) { if ( v[i].size() == 1 && fa != -1 ) { A[i] = k[i]; B[i] = 1 - k[i] - e[i]; C[i] = 1 - k[i] - e[i]; return true; } A[i] = k[i]; B[i] = (1 - k[i] - e[i]) / v[i].size(); C[i] = 1 - k[i] - e[i]; double tmp = 0; for (int j = 0; j < (int)v[i].size(); j++) { if ( v[i][j] == fa ) continue; if ( !search(v[i][j], i) ) return false; A[i] += A[v[i][j]] * B[i]; C[i] += C[v[i][j]] * B[i]; tmp += B[v[i][j]] * B[i]; } if ( fabs(tmp - 1) < 1e-10 ) return false; A[i] /= 1 - tmp; B[i] /= 1 - tmp; C[i] /= 1 - tmp; return true; } int main() { int nc, n, s, t; cin >> nc; for (int ca = 1; ca <= nc; ca++) { cin >> n; for (int i = 1; i <= n; i++) v[i].clear(); for (int i = 1; i < n; i++) { cin >> s >> t; v[s].push_back(t); v[t].push_back(s); } for (int i = 1; i <= n; i++) { cin >> k[i] >> e[i]; k[i] /= 100.0; e[i] /= 100.0; } cout << "Case " << ca << ": "; if ( search(1, -1) && fabs(1 - A[1]) > 1e-10 ) cout << C[1]/(1 - A[1]) << endl; else cout << "impossible" << endl; } return 0; }