引言
之前写了一个wishbone接口的slave,work的很好。
但是要想实现一个功能完成的ipcore,必然要有master接口。
这次就写一个ipcore(mycore),既包含slave,又包含master。
一个具有类似DMA功能的ip core。
另:本小节中省略了一些virtualbox下的操作细节,请参考上一篇文章:
http://blog.csdn.net/rill_zhen/article/details/8722664
1,控制流程
1>mycore的linux下的driver写slave
2>slave根据driver发来的指令控制master
3>master进行相应操作,并返回给slave
4>mycore的linux下的driver读slave
2,功能概述
2.1 master写功能
1》driver向slave的num_1寄存器里写入0x11223344
2》driver向slave的write_address寄存器里写入0x00000097.(这是让master 写的地址,其实就是num_1)
3》driver向slave的num_2寄存器里写入0x03000000.(这是让master开始写)
4》打印
5》driver读slave,验证master写入的值是否正确。
2.1.0 模块总连接图
2.1.1 代码修改流程说明:跟单独包含slave的ipcore差不多
1》编写符合wishbone master接口和相应内部逻辑的ip core:mycore
2》d_bus的arbiter增加master接口:master2
3》修改master的仲裁优先级
4》例化本ipcore
5》编写linux下的driver并测试验证
2.1.2 code list:mycore.v,mkg_master.v,mkg_slave.v
1》mycore.v
/* * * mycore.v * * rill create 2013-04-02 * */ `include "orpsoc-defines.v" module mycore ( //===slave interface signals wb_clk, wb_rst, wb_dat_i, wb_adr_i, wb_sel_i, wb_cti_i, wb_bte_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_dat_o, wb_ack_o, wb_err_o, wb_rty_o, //===master interface signals m_adr, m_din, m_dout, m_cyc, m_stb, m_sel, m_we, m_ack, m_err, m_rty, m_cti, m_bte ); //===slave interface input [31:0] wb_adr_i; input wb_stb_i; input wb_cyc_i; input [2:0] wb_cti_i; input [1:0] wb_bte_i; input wb_clk; input wb_rst; input [31:0] wb_dat_i; input [3:0] wb_sel_i; input wb_we_i; output [31:0] wb_dat_o; output wb_ack_o; output wb_err_o; output wb_rty_o; //===master interface input m_ack; input m_err; input m_rty; input [31:0] m_din; output [31:0] m_adr; output [31:0] m_dout; output m_cyc; output m_stb; output [3:0] m_sel; output m_we; output [2:0] m_cti; output [1:0] m_bte; wire [31:0] address; wire [2:0] flag; wire [2:0] test; wire [1:0] done; //===slave external parameters parameter addr_width = 32; parameter mycore_adr = 32'h97; mkg_slave mkg_slave0 ( .address (address), .flag (flag), .test_status (test), .test_done (done), .wb_clk (wb_clk), .wb_rst (wb_rst), .wb_dat_i (wb_dat_i), .wb_adr_i (wb_adr_i), .wb_sel_i (wb_sel_i), .wb_cti_i (wb_cti_i), .wb_bte_i (wb_bte_i), .wb_we_i (wb_we_i), .wb_cyc_i (wb_cyc_i), .wb_stb_i (wb_stb_i), .wb_dat_o (wb_dat_o), .wb_ack_o (wb_ack_o), .wb_err_o (wb_err_o), .wb_rty_o (wb_rty_o) ); mkg_master mkg_master ( .address (address), .flag (flag), .test_status (test), .test_done (done), .wb_clk (wb_clk), .wb_rst (wb_rst), .wb_adr_o (m_adr), .wb_dat_o (m_dout), .wb_sel_o (m_sel), .wb_we_o (m_we), .wb_cyc_o (m_cyc), .wb_stb_o (m_stb), .wb_cti_o (m_cti), .wb_bte_o (m_bte), .wb_dat_i (m_din), .wb_ack_i (m_ack), .wb_err_i (m_err), .wb_rty_i (m_rty) ); endmodule /************** EOF ****************/
2》mkg_master.v
/* * * mkg_master.v * * rill create 2013-04-02 * */ module mkg_master ( address, flag, test_status, test_done, //wishbone interface wb_clk, wb_rst, wb_adr_o, wb_dat_o, wb_sel_o, wb_we_o, wb_cyc_o, wb_stb_o, wb_cti_o, wb_bte_o, wb_dat_i, wb_ack_i, wb_err_i, wb_rty_i ); input [31:0] address; input [2:0] flag; output reg [2:0] test_status; output reg [1:0] test_done; //wishbone interface input wb_clk; input wb_rst; input wb_ack_i; input wb_err_i; input wb_rty_i; input [31:0] wb_dat_i; output reg [31:0] wb_adr_o; output reg [31:0] wb_dat_o; output reg wb_cyc_o; output reg wb_stb_o; output reg [3:0] wb_sel_o; output reg wb_we_o; output reg [2:0] wb_cti_o; output reg [1:0] wb_bte_o; //====master status define parameter m_idle = 3'b000; parameter m_wait_ack_read = 3'b001; parameter m_wait_ack_write = 3'b010; reg [2:0] status = m_idle; reg [31:0] ram_data; always @(posedge wb_clk) begin test_status <= status; end always @(posedge wb_clk) begin if(wb_rst) begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b00; status <= m_idle; end else begin case (status) m_idle: begin if(3'd1 == flag)//read begin wb_cyc_o <= 1'b1; wb_stb_o <= 1'b1; wb_adr_o <= address; wb_we_o <= 1'b0; status <= m_wait_ack_read; end else if(3'd2 == flag)//write begin wb_adr_o <= address; wb_dat_o <= 32'h4444_4444; wb_cyc_o <= 1'b1; wb_stb_o <= 1'b1; wb_we_o <= 1'b1; status <= m_wait_ack_write; end else begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; status <= m_idle; end end m_wait_ack_read: begin if(1'b1 != wb_ack_i) begin test_done <= 2'b10; status <= m_wait_ack_read; end else begin ram_data <= wb_dat_i; wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b01; status <= m_idle; end end m_wait_ack_write: begin if(1'b1 != wb_ack_i) begin test_done <= 2'b10; status <= m_wait_ack_write; end else begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b01; status <= m_idle; end end default: begin status <= m_idle; end endcase end end endmodule /************** EOF ****************/
3》mkg_slave.v
/* * * mkg_slave.v * * rill create 2013-04-02 * */ `include "orpsoc-defines.v" module mkg_slave ( address, flag, test_status, test_done, //===slave interface signals wb_clk, wb_rst, wb_dat_i, wb_adr_i, wb_sel_i, wb_cti_i, wb_bte_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_dat_o, wb_ack_o, wb_err_o, wb_rty_o ); output reg [31:0] address; output reg [2:0] flag; input [2:0] test_status; input [1:0] test_done; //===slave interface input [addr_width-1:0] wb_adr_i; input wb_stb_i; input wb_cyc_i; input [2:0] wb_cti_i; input [1:0] wb_bte_i; input wb_clk; input wb_rst; input [31:0] wb_dat_i; input [3:0] wb_sel_i; input wb_we_i; output reg [31:0] wb_dat_o; output reg wb_ack_o; output wb_err_o; output wb_rty_o; //===slave external parameters parameter addr_width = 32; parameter mycore_adr = 8'h97; //===slave local regs reg [addr_width-1:0] num_1;//addr index:0x0 reg [addr_width-1:0] num_2;//addr index:0x4 reg [addr_width-1:0] sum;//addr index:0x8 reg [31:0] master_status;//test reg 0xc reg [31:0] write_address;//0x10 //====slave status define parameter s_idle = 3'b000; parameter s_read = 3'b001; parameter s_write = 3'b010; reg [2:0] state = s_idle; reg [1:0] done_flag = 2'b0; reg [2:0] m_status; reg [1:0] m_done; //===mycore process start---> assign wb_err_o=0; assign wb_rty_o=0; //===slave process================ always @(posedge wb_clk) begin m_status <= test_status; m_done <= test_done; end always @(posedge wb_clk) begin master_status <= {27'b1001_1010_1011_1100_1101_1110_1111_0000,m_status,m_done}; end always @(*) begin sum = num_1 + num_2; end always @(posedge wb_clk) begin if(wb_rst) begin address <= 32'h0; flag <= 3'b0; done_flag <= 2'b0; end else begin if(2'b10 == done_flag) begin address <= 32'h0; flag <= 3'b0; end else if(2'b01 == done_flag) begin address <= write_address; flag <= 3'b010; done_flag <= 2'b10; end else begin if(3 == num_2) begin address <= write_address; flag <= 3'b010; done_flag <= 2'b01; end else begin address <= 32'h0; flag <= 3'b0; done_flag <= 2'b00; end end end end always @(posedge wb_clk) begin if(wb_rst) begin state <= s_idle; end else begin case(state) s_idle: begin wb_dat_o <= 1'b0; wb_ack_o <= 1'b0; if(wb_stb_i && wb_cyc_i && wb_we_i) begin state <= s_write; end else if(wb_stb_i && wb_cyc_i && !wb_we_i) begin state <= s_read; end else begin state <= s_idle; end end s_write: begin if(wb_adr_i == {mycore_adr,24'h000000}) begin num_1 <= wb_dat_i; wb_ack_o <= 1'b1; end else if(wb_adr_i == {mycore_adr,24'h000004}) begin num_2 <= wb_dat_i; wb_ack_o <= 1'b1; end else if(wb_adr_i == {mycore_adr,24'h000010}) begin write_address <= wb_dat_i; wb_ack_o <= 1'b1; end else begin //wb_ack_o=1'b0; end state <= s_idle; end s_read: begin if(wb_adr_i=={mycore_adr,24'h000000}) begin wb_dat_o <= num_1; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000004}) begin wb_dat_o <= num_2; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000008}) begin wb_dat_o <= sum; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h00000c}) begin wb_dat_o <= master_status; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000010}) begin wb_dat_o <= write_address; wb_ack_o <= 1'b1; end else begin wb_dat_o = 0; wb_ack_o <= 1'b1; end state <= s_idle; end default: begin state <= s_idle; end endcase end end endmodule /************** EOF ****************/
4》d_bus 优先级代码
5》linux driver
ip_mkg.c:
/* * * rill mkg driver * */ #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/fs.h> #include <asm/uaccess.h> /* get_user and put_user */ //#include <linux/clk.h> //#include <linux/ioport.h> #include <asm/io.h> /*ioremap*/ #include <linux/platform_device.h> /*cleanup_module*/ #include <asm-generic/io.h> #include "ip_mkg.h" void __iomem *g_mkg_mem_base = NULL; static int device_open(struct inode *inode, struct file *file) { g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN); if(NULL == g_mkg_mem_base) { printk(KERN_ERR "mkg open ioremap error!\n"); return -1; } else { printk("mkg ioremap addr:%d!\n",(int)g_mkg_mem_base); } return 0; } static int device_release(struct inode *inode, struct file *file) { return 0; } static ssize_t device_read(struct file *filp, char *buffer, size_t length, loff_t *offset) { /*int ret_val = 0; char * data = NULL; data = (char*)kmalloc(4, GFP_KERNEL); if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) ioread32(g_mkg_mem_base+length); printk("============read:%d\n",);*/ return 1; } static ssize_t device_write(struct file *filp, const char *buffer, size_t count, loff_t *offset) { //iowrite32(2,g_mkg_mem_base); return 1; } long device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param) { #if 0 int ret_val = 0; unsigned int ret = 0; struct reg_data *new_regs; printk("ioctl======\n"); switch(ioctl_num) { case IOCTL_REG_SET: { new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL); if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) { kfree(new_regs); printk(KERN_ERR " error copy line_datafrom user.\n"); return -1; } //iowrite16(new_regs->value,g_mkg_mem_base+new_regs->addr); kfree(new_regs); } break; case IOCTL_REG_GET: { new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL); if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0) { kfree(new_regs); printk(KERN_ERR " error copy line_datafrom user.\n"); return -1; } //ret = ioread16(g_mkg_mem_base+new_regs->addr); kfree(new_regs); return ret; } break; } #endif return -1; } struct file_operations our_file_ops = { .unlocked_ioctl = device_ioctl, .read = device_read, .write = device_write, .open = device_open, .release = device_release, .owner = THIS_MODULE, }; void test(void) { int loop = 0; unsigned int phy_addr1 = 0; unsigned int phy_addr2 = 0; int * virtual_addr1 = NULL; int * virtual_addr2 = NULL; printk("<----ip_mkg test start---->\n"); //=====ip_mkg reg test======================================================== #if 1 printk("reg test start==\n"); iowrite32(0x11223344,g_mkg_mem_base); iowrite32(0x00000097,g_mkg_mem_base+0x10); iowrite32(0x03000000,g_mkg_mem_base+4); printk("reg test start1==\n"); printk("reg test start2==\n"); printk("reg test start3==\n"); for(loop=0;loop<7;loop++) printk("====reg addr==0x%x==reg value:0x%x==\n",loop*4,ioread32(g_mkg_mem_base+4*loop)); #endif //========================================================================= //============mem write test #if 0 printk("mem write test start==\n"); iowrite32(0x97000004,g_mkg_mem_base); iowrite32(0x2,g_mkg_mem_base+0xc); printk("======reg:c value:0x%x==\n",ioread32(g_mkg_mem_base+0xc)); printk("======reg:14 value:0x%x==\n",ioread32(g_mkg_mem_base+0x14)); printk("======reg:18 value:0x%x==\n",ioread32(g_mkg_mem_base+0x18)); printk("======reg:1c value:0x%x==\n",ioread32(g_mkg_mem_base+0x1c)); printk("======reg:20 value:0x%x==\n",ioread32(g_mkg_mem_base+0x20)); printk("======reg:24 value:0x%x==\n",ioread32(g_mkg_mem_base+0x24)); for(loop = 0;loop<10;loop++) printk("wait=write=\n"); printk("wait=write=\n"); iowrite32(0x1,g_mkg_mem_base+0xc); printk("======reg:c value:0x%x==\n",ioread32(g_mkg_mem_base+0xc)); for(loop = 0;loop<10;loop++) printk("wait=read=\n"); printk("wait=read=\n"); printk("======reg:10 value:0x%x==\n",ioread32(g_mkg_mem_base+0x10)); printk("======reg:c value:0x%x==\n\n",ioread32(g_mkg_mem_base+0xc)); #endif //============mem read test #if 0 printk("mem read test start==\n"); virtual_addr1 = (int *)kmalloc(sizeof(int), GFP_KERNEL); virtual_addr2 = (int *)kmalloc(sizeof(int), GFP_KERNEL); *virtual_addr1 = 0x55; *virtual_addr2 = 0x66; phy_addr1 = virt_to_phys(virtual_addr1); phy_addr2 = virt_to_phys(virtual_addr2); printk("virtual addr1:0x%x==phy addr1:0x%x==\n",(int)virtual_addr1,phy_addr1); printk("virtual addr2:0x%x==phy addr2:0x%x==\n",(int)virtual_addr2,phy_addr2); iowrite32(phy_addr1,g_mkg_mem_base); iowrite32(0x1,g_mkg_mem_base+0xc); printk("wait=read=\n"); printk("======reg:0 value:0x%x==\n",ioread32(g_mkg_mem_base)); printk("======reg:c value:0x%x==\n",ioread32(g_mkg_mem_base+0xc)); printk("====phy addr1==0x%x==ram value:0x%x==\n",phy_addr1,ioread32(g_mkg_mem_base+0x10)); printk("======reg:c value:0x%x==\n\n",ioread32(g_mkg_mem_base+0xc)); iowrite32(phy_addr2,g_mkg_mem_base); iowrite32(0x1,g_mkg_mem_base+0xc); printk("wait=2=\n"); printk("======reg:0 value:0x%x==\n",ioread32(g_mkg_mem_base)); printk("======reg:c value:0x%x==\n",ioread32(g_mkg_mem_base+0xc)); printk("====phy addr2==0x%x==ram value:0x%x==\n",phy_addr2,ioread32(g_mkg_mem_base+0x10)); printk("======reg:c value:0x%x==\n\n",ioread32(g_mkg_mem_base+0xc)); kfree(virtual_addr1); kfree(virtual_addr2); #endif printk("<----ip_mkg test end---->\n"); } int init_module() { int ret_val; int ret; void __iomem *ret_from_request; //=== Allocate character device ret_val = register_chrdev(MAJOR_NUM, DEVICE_NAME, &our_file_ops); if (ret_val < 0) { printk(KERN_ALERT " device %s failed(%d)\n", DEVICE_NAME, ret_val); return ret_val; } ret = check_mem_region(MKG_MEM_BASE, MKG_MEM_LEN); if (ret < 0) { printk(KERN_ERR "mkg check_mem_region bussy error!\n"); return -1; } ret_from_request = request_mem_region(MKG_MEM_BASE, MKG_MEM_LEN, "ip_mkg"); //===ioremap mkg registers g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN); if(NULL == g_mkg_mem_base) { printk(KERN_ERR "mkg ioremap error!\n"); return -1; } else { ;//printk("mkg ioremap addr:%d!\n",(unsigned int)g_mkg_mem_base); } printk("mkg module init done!\n"); test(); return 0; } void cleanup_module() { release_mem_region(MKG_MEM_BASE, MKG_MEM_LEN); unregister_chrdev(MAJOR_NUM, DEVICE_NAME); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rill zhen:[email protected]");
ip_mkg.h:
#ifndef __IP_MKG_H__ #define __IP_MKG_H__ #define MAJOR_NUM 102 #define DEVICE_NAME "ip_mkg" #define MKG_MEM_BASE 0x97000000 #define MKG_MEM_LEN 32 #define IOCTL_REG_SET 0 #define IOCTL_REG_GET 1 struct reg_data { unsigned short addr; int value; }; #endif
6》makefile
# To build modules outside of the kernel tree, we run "make" # in the kernel source tree; the Makefile these then includes this # Makefile once again. # This conditional selects whether we are being included from the # kernel Makefile or not. ifeq ($(KERNELRELEASE),) # Assume the source tree is where the running kernel was built # You should set KERNELDIR in the environment if it's elsewhere KERNELDIR ?= /home/openrisc/soc-design/linux # The current directory is passed to sub-makes as argument PWD := $(shell pwd) modules: make -C $(KERNELDIR) M=$(PWD) modules ARCH=openrisc CROSS_COMPILE=or32-linux- modules_install: make -C $(KERNELDIR) M=$(PWD) modules_install ARCH=openrisc CROSS_COMPILE=or32-linux- clean: rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions *.order *.symvers .PHONY: modules modules_install clean else # called from kernel build system: just declare what our modules are obj-m := ip_mkg.o endif
2.1.3 模块连接图:
2.1.4 验证结果:
2.2 master读功能
1》driver向slave的num_1寄存器里写入0x11223344
2》driver向slave的write_address寄存器里写入0x00000097.(这是让master 读的地址,其实就是num_1)
3》driver向slave的num_2寄存器里写入0x03000000.(这是让master开始读)
4》打印
5》driver读slave,验证master读入的值是否正确。
2.2.1 code list:mycore.v,mkg_master.v,mkg_slave.v
1》mycore.v
/* * * mycore.v * * rill create 2013-04-02 * */ `include "orpsoc-defines.v" module mycore ( //===slave interface signals wb_clk, wb_rst, wb_dat_i, wb_adr_i, wb_sel_i, wb_cti_i, wb_bte_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_dat_o, wb_ack_o, wb_err_o, wb_rty_o, //===master interface signals m_adr, m_din, m_dout, m_cyc, m_stb, m_sel, m_we, m_ack, m_err, m_rty, m_cti, m_bte ); //===slave interface input [31:0] wb_adr_i; input wb_stb_i; input wb_cyc_i; input [2:0] wb_cti_i; input [1:0] wb_bte_i; input wb_clk; input wb_rst; input [31:0] wb_dat_i; input [3:0] wb_sel_i; input wb_we_i; output [31:0] wb_dat_o; output wb_ack_o; output wb_err_o; output wb_rty_o; //===master interface input m_ack; input m_err; input m_rty; input [31:0] m_din; output [31:0] m_adr; output [31:0] m_dout; output m_cyc; output m_stb; output [3:0] m_sel; output m_we; output [2:0] m_cti; output [1:0] m_bte; wire [31:0] address; wire [2:0] flag; wire [2:0] test; wire [1:0] done; wire [31:0] value; //===slave external parameters parameter addr_width = 32; parameter mycore_adr = 32'h97; mkg_slave mkg_slave0 ( .address (address), .flag (flag), .test_status (test), .test_done (done), .ram_data (value), .wb_clk (wb_clk), .wb_rst (wb_rst), .wb_dat_i (wb_dat_i), .wb_adr_i (wb_adr_i), .wb_sel_i (wb_sel_i), .wb_cti_i (wb_cti_i), .wb_bte_i (wb_bte_i), .wb_we_i (wb_we_i), .wb_cyc_i (wb_cyc_i), .wb_stb_i (wb_stb_i), .wb_dat_o (wb_dat_o), .wb_ack_o (wb_ack_o), .wb_err_o (wb_err_o), .wb_rty_o (wb_rty_o) ); mkg_master mkg_master ( .address (address), .flag (flag), .test_status (test), .test_done (done), .ram_data (value), .wb_clk (wb_clk), .wb_rst (wb_rst), .wb_adr_o (m_adr), .wb_dat_o (m_dout), .wb_sel_o (m_sel), .wb_we_o (m_we), .wb_cyc_o (m_cyc), .wb_stb_o (m_stb), .wb_cti_o (m_cti), .wb_bte_o (m_bte), .wb_dat_i (m_din), .wb_ack_i (m_ack), .wb_err_i (m_err), .wb_rty_i (m_rty) ); endmodule /************** EOF ****************/
2》mkg_master.v
/* * * mkg_master.v * * rill create 2013-04-02 * */ module mkg_master ( address, flag, test_status, test_done, ram_data, //wishbone interface wb_clk, wb_rst, wb_adr_o, wb_dat_o, wb_sel_o, wb_we_o, wb_cyc_o, wb_stb_o, wb_cti_o, wb_bte_o, wb_dat_i, wb_ack_i, wb_err_i, wb_rty_i ); input [31:0] address; input [2:0] flag; output reg [2:0] test_status; output reg [1:0] test_done; output reg [31:0] ram_data; //wishbone interface input wb_clk; input wb_rst; input wb_ack_i; input wb_err_i; input wb_rty_i; input [31:0] wb_dat_i; output reg [31:0] wb_adr_o; output reg [31:0] wb_dat_o; output reg wb_cyc_o; output reg wb_stb_o; output reg [3:0] wb_sel_o; output reg wb_we_o; output reg [2:0] wb_cti_o; output reg [1:0] wb_bte_o; //====master status define parameter m_idle = 3'b000; parameter m_wait_ack_read = 3'b001; parameter m_wait_ack_write = 3'b010; reg [2:0] status = m_idle; always @(posedge wb_clk) begin test_status <= status; end always @(posedge wb_clk) begin if(wb_rst) begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b00; status <= m_idle; end else begin case (status) m_idle: begin if(3'd1 == flag)//read begin wb_cyc_o <= 1'b1; wb_stb_o <= 1'b1; wb_adr_o <= address; wb_we_o <= 1'b0; status <= m_wait_ack_read; end else if(3'd2 == flag)//write begin wb_adr_o <= address; wb_dat_o <= 32'h4444_4444; wb_cyc_o <= 1'b1; wb_stb_o <= 1'b1; wb_we_o <= 1'b1; status <= m_wait_ack_write; end else begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; status <= m_idle; end end m_wait_ack_read: begin if(1'b1 != wb_ack_i) begin test_done <= 2'b10; status <= m_wait_ack_read; end else begin ram_data <= wb_dat_i; wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b01; status <= m_idle; end end m_wait_ack_write: begin if(1'b1 != wb_ack_i) begin test_done <= 2'b10; status <= m_wait_ack_write; end else begin wb_cyc_o <= 1'b0; wb_stb_o <= 1'b0; wb_we_o <= 1'b0; wb_adr_o <= 32'h0; wb_dat_o <= 32'h0; test_done <= 2'b01; status <= m_idle; end end default: begin status <= m_idle; end endcase end end endmodule /************** EOF ****************/
3》mkg_slave.v
/* * * mkg_slave.v * * rill create 2013-04-02 * */ `include "orpsoc-defines.v" module mkg_slave ( address, flag, test_status, test_done, ram_data, //===slave interface signals wb_clk, wb_rst, wb_dat_i, wb_adr_i, wb_sel_i, wb_cti_i, wb_bte_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_dat_o, wb_ack_o, wb_err_o, wb_rty_o ); output reg [31:0] address; output reg [2:0] flag; input [2:0] test_status; input [1:0] test_done; input [31:0] ram_data; //===slave interface input [addr_width-1:0] wb_adr_i; input wb_stb_i; input wb_cyc_i; input [2:0] wb_cti_i; input [1:0] wb_bte_i; input wb_clk; input wb_rst; input [31:0] wb_dat_i; input [3:0] wb_sel_i; input wb_we_i; output reg [31:0] wb_dat_o; output reg wb_ack_o; output wb_err_o; output wb_rty_o; //===slave external parameters parameter addr_width = 32; parameter mycore_adr = 8'h97; //===slave local regs reg [addr_width-1:0] num_1;//addr index:0x0 reg [addr_width-1:0] num_2;//addr index:0x4 reg [addr_width-1:0] sum;//addr index:0x8 reg [31:0] master_status;//test reg 0xc reg [31:0] write_address;//0x10 reg [31:0] read_value;//0x14 //====slave status define parameter s_idle = 3'b000; parameter s_read = 3'b001; parameter s_write = 3'b010; reg [2:0] state = s_idle; reg [1:0] done_flag = 2'b0; reg [2:0] m_status; reg [1:0] m_done; //===mycore process start---> assign wb_err_o=0; assign wb_rty_o=0; //===slave process================ always @(posedge wb_clk) begin m_status <= test_status; m_done <= test_done; read_value <= ram_data; end always @(posedge wb_clk) begin master_status <= {27'b1001_1010_1011_1100_1101_1110_1111_0000,m_status,m_done}; end always @(*) begin sum = num_1 + num_2; end always @(posedge wb_clk) begin if(wb_rst) begin address <= 32'h0; flag <= 3'b0; done_flag <= 2'b0; end else begin if(2'b10 == done_flag) begin address <= 32'h0; flag <= 3'b0; end else if(2'b01 == done_flag) begin address <= write_address; flag <= 3'b001; done_flag <= 2'b10; end else begin if(3 == num_2) begin address <= write_address; flag <= 3'b001; done_flag <= 2'b01; end else begin address <= 32'h0; flag <= 3'b0; done_flag <= 2'b00; end end end end always @(posedge wb_clk) begin if(wb_rst) begin state <= s_idle; end else begin case(state) s_idle: begin wb_dat_o <= 1'b0; wb_ack_o <= 1'b0; if(wb_stb_i && wb_cyc_i && wb_we_i) begin state <= s_write; end else if(wb_stb_i && wb_cyc_i && !wb_we_i) begin state <= s_read; end else begin state <= s_idle; end end s_write: begin if(wb_adr_i == {mycore_adr,24'h000000}) begin num_1 <= wb_dat_i; wb_ack_o <= 1'b1; end else if(wb_adr_i == {mycore_adr,24'h000004}) begin num_2 <= wb_dat_i; wb_ack_o <= 1'b1; end else if(wb_adr_i == {mycore_adr,24'h000010}) begin write_address <= wb_dat_i; wb_ack_o <= 1'b1; end else begin //wb_ack_o=1'b0; end state <= s_idle; end s_read: begin if(wb_adr_i=={mycore_adr,24'h000000}) begin wb_dat_o <= num_1; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000004}) begin wb_dat_o <= num_2; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000008}) begin wb_dat_o <= sum; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h00000c}) begin wb_dat_o <= master_status; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000010}) begin wb_dat_o <= write_address; wb_ack_o <= 1'b1; end else if(wb_adr_i=={mycore_adr,24'h000014}) begin wb_dat_o <= read_value; wb_ack_o <= 1'b1; end else begin wb_dat_o = 0; wb_ack_o <= 1'b1; end state <= s_idle; end default: begin state <= s_idle; end endcase end end endmodule /************** EOF ****************/
4》d_bus 优先级代码:arbiter_dbus.v(与写相同)
5》linux driver(与写相同)
6》makefile(与写相同)
2.2.3 模块连接图:
2.2.4 验证结果:
2.3 小结
写driver时要注意大小端的问题。
比如想写0x97000000(master要访问的地址),在driver里面要写0x00000097。