/* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生
* All rights reserved.
* 文件名称:定义一个复数类重载运算符+、-、*、/,使之能用于复数的加减乘除。
* 作 者:王 琦
* 完成日期:2012年04月11 日
* 版 本 号:
* 输入描述:实现复数类中的运算符重载 方案3
* 问题描述:定义一个复数类重载运算符+、-、*、/,使之能用于复数的加减乘除
* 程序输出:
#include <iostream> using namespace std; class Complex { public: Complex(){real=0;imag=0;} Complex(double r,double i){real=r;imag=i;} Complex operator-(); friend Complex operator+(Complex &c1, Complex &c2); friend Complex operator+(double d1, Complex &c2); friend Complex operator+(Complex &c1, double d2); friend Complex operator-(Complex &c1, Complex &c2); friend Complex operator-(double d1, Complex &c2); friend Complex operator-(Complex &c1, double d2); friend Complex operator*(Complex &c1, Complex &c2); friend Complex operator*(double d1, Complex &c2); friend Complex operator*(Complex &c1, double d2); friend Complex operator/(Complex &c1, Complex &c2); friend Complex operator/(double d1, Complex &c2); friend Complex operator/(Complex &c1, double d2); void display(); private: double real; double imag; }; Complex Complex::operator-() { return(0-*this); } //复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i. Complex operator+(Complex &c1, Complex &c2) { Complex c; c.real=c1.real+c2.real; c.imag=c1.imag+c2.imag; return c; } Complex operator+(double d1, Complex &c2) { Complex c(d1,0); return c+c2; //按运算法则计算的确可以,但充分利用已经定义好的代码,既省人力,也避免引入新的错误,但可能机器的效率会不佳 } Complex operator+(Complex &c1, double d2) { Complex c(d2,0); return c1+c; } //复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i. Complex operator-(Complex &c1, Complex &c2) { Complex c; c.real=c1.real-c2.real; c.imag=c1.imag-c2.imag; return c; } Complex operator-(double d1, Complex &c2) { Complex c(d1,0); return c-c2; } Complex operator-(Complex &c1, double d2) { Complex c(d2,0); return c1-c; } //复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i. Complex operator*(Complex &c1, Complex &c2) { Complex c; c.real=c1.real*c2.real-c1.imag*c2.imag; c.imag=c1.imag*c2.real+c1.real*c2.imag; return c; } Complex operator*(double d1, Complex &c2) { Complex c(d1,0); return c*c2; } Complex operator*(Complex &c1, double d2) { Complex c(d2,0); return c1*c; } //复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i Complex operator/(Complex &c1, Complex &c2) { Complex c; c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); return c; } Complex operator/(double d1, Complex &c2) { Complex c(d1,0); return c/c2; } Complex operator/(Complex &c1, double d2) { Complex c(d2,0); return c1/c; } void Complex::display() { cout<<"("<<real<<","<<imag<<"i)"<<endl; } int main() { Complex c1(3,4),c2(5,-10),c3; double d=11; cout<<"c1="; c1.display(); cout<<"c2="; c2.display(); cout<<"d="<<d<<endl; cout<<"-c1=";(-c1).display(); c3=c1+c2; cout<<"c1+c2="; c3.display(); cout<<"c1+d="; (c1+d).display(); cout<<"d+c1="; (d+c1).display(); c3=c1-c2; cout<<"c1-c2="; c3.display(); cout<<"c1-d="; (c1-d).display(); cout<<"d-c1="; (d-c1).display(); c3=c1*c2; cout<<"c1*c2="; c3.display(); cout<<"c1*d="; (c1*d).display(); cout<<"d*c1="; (d*c1).display(); c3=c1/c2; cout<<"c1/c2="; c3.display(); cout<<"c1/d="; (c1/d).display(); cout<<"d/c1="; (d/c1).display(); system("pause"); return 0; }