// The Problem With the Problem Setter (命题者的难题) // PC/UVa IDs: 111008/10092, Popularity: C, Success rate: average Level: 3 // Verdict: Accepted // Submission Date: 2011-10-08 // UVa Run Time: 0.060s // // 版权所有(C)2011,邱秋。metaphysis # yeah dot net // // [Problem Description] // So many students are interested in participating in this year’s regional // programming contest that we have decided to arrange a screening test to // identify the most promising candidates. This test may include as many as 100 // problems drawn from as many as 20 categories. I have been assigned the job of // setting problems for this test. // // At first the job seemed to be very easy, since I was told that I would be // given a pool of about 1,000 problems divided into appropriate categories. // After getting the problems, however, I discovered that the original authors // often wrote down multiple category-names in the category fields. Since no // problem can used in more than one category and the number of problems needed // for each category is fixed, assigning problems for the test is not so easy. // // [Input] // The input file may contain multiple test cases, each of which begins with a // line containing two integers, nk and np , where nk is the number of categories // and np is the number of problems in the pool. There will be between 2 and 20 // categories and at most 1,000 problems in the pool. // // The second line contains nk positive integers, where the ith integer specifies // the number of problems to be included in category i (1 ≤ i ≤ nk ) of the test. // You may assume that the sum of these nk integers will never exceed 100. The // jth (1 ≤ j ≤ np ) of the next np lines contains the category information of // the jth problem in the pool. Each such problem category specification starts // with a positive integer specifying the number of categories in which this // problem can be included, followed by the actual category numbers. // // A test case containing two zeros for nk and np terminates the input. // // [Output] // For each test case, print a line reporting whether problems can be successfully // selected from the pool under the given restrictions, with 1 for success and // 0 for failure. // // In case of successful selection, print nk additional lines where the ith line // contains the problem numbers that can be included in category i. Problem // numbers are positive integers not greater then np and each two problem numbers // must be separated by a single space. Any successful selection will be accepted. // // [Sample Input] // 3 15 // 3 3 4 // 2 1 2 // 1 3 // 1 3 // 1 3 // 1 3 // 3 1 2 3 // 2 2 3 // 2 1 3 // 1 2 // 1 2 // 2 1 2 // 2 1 3 // 2 1 2 // 1 1 // 3 1 2 3 // 3 15 // 7 3 4 // 2 1 2 // 1 1 // 1 2 // 1 2 // 1 3 // 3 1 2 3 // 2 2 3 // 2 2 3 // 1 2 // 1 2 // 2 2 3 // 2 2 3 // 2 1 2 // 1 1 // 3 1 2 3 // 0 0 // // [Sample Output] // 1 // 8 11 12 // 1 6 7 // 2 3 4 5 // 0 // // [解题方法] // 此题和 UVa 100249 类似,可以建模成求最大流问题。设立源点 source,从源点到每道题目之间弧的 // 容量为 1,每道题目到各个类别之间弧的容量为 1,题目类别到汇点 sink 之间弧的容量为该类别所要 // 求的题目数,然后求此图的最大流能否达到题目要求数。 #include <iostream> #include <cstring> #include <queue> using namespace std; #define MAXCATEGORY 21 #define MAXPROBLEM 1001 #define MAXV 1030 // 最大顶点数。 #define UNSOLVABLE 0 // 无安排方案。 #define SOLVABLE 1 // 存在安排方案。 #define DUMMY (-1) // 表示顶点无父亲顶点。 struct edge { int vertex; // 相连的顶点。 int capacity; // 容量。 int flow; // 流量。 int residual; // 残余流量。 }; edge edges[MAXV][MAXV]; // 有向图的边。 int degree[MAXV]; // 有向图中顶点的度。 int parents[MAXV]; // 遍历标记,当前顶点的父亲顶点。 bool discovered[MAXV]; // 遍历标记,是否已发现。 // 使用宽度优先遍历找到一条从源点到汇点的剩余流量为正的通路。从源到汇的任意增广路都能增加总流量,因 // 此可以借用宽度优先遍历,需要注意的是,只能沿着“还能增广”(即残余容量为正数)的边走,因此需要在 // 遍历过程中判断残余容量是否为正,以帮助宽度优先遍历区分开饱和边和非饱和边。 void breadthFirstSearch(int source, int sink) { queue < int > vertices; vertices.push(source); discovered[source] = true; while (!vertices.empty()) { int v = vertices.front(); vertices.pop(); for (int i = 0; i < degree[v]; i++) // 检查是否为饱和边。 if (edges[v][i].residual > 0) { if (discovered[edges[v][i].vertex] == false) { vertices.push(edges[v][i].vertex); discovered[edges[v][i].vertex] = true; parents[edges[v][i].vertex] = v; } if (edges[v][i].vertex == sink) return; } } } // 找到顶点 x 与顶点 y 之间的有向边。 edge *findEdge(int x, int y) { for (int i = 0; i < degree[x]; i++) if (edges[x][i].vertex == y) return &edges[x][i]; } // 增广,注意对前向弧和反向弧的处理。 void augmentPath(int source, int sink, int volume) { if (source == sink) return; edge *e = findEdge(parents[sink], sink); e->flow += volume; e->residual -= volume; e = findEdge(sink, parents[sink]); e->residual += volume; augmentPath(source, parents[sink], volume); } // 根据 BFS 的结果,从汇点 sink 到源点 source 计算通路的容量。增广的过程把尽量多的残余流量转 // 化为正流量。增广路的容量等于整条路中残余容量的最小值,正如车流的速度取决于最拥挤的路段。 int pathVolume(int source, int sink) { if (parents[sink] == DUMMY) return 0; edge *e = findEdge(parents[sink], sink); if (source == parents[sink]) return (e->residual); else return (min(pathVolume(source, parents[sink]), e->residual)); } // 初始化搜索变量。 void initializeSearch() { memset(discovered, false, sizeof(discovered)); memset(parents, DUMMY, sizeof(parents)); } // 网络流解题。每次从源到汇寻找一条可以增加总流量的路径,并且用它增广。当没有增广路存在时,算法终 // 止,此时的流就是最大流。注意需要将每条有向边 e = (i,j) 拆分成两条弧 (i,j) 和 (j,i), // 其中 (i,j) 的初始残余容量为 e 的容量,(j,i) 的残余容量为 0,所有的弧的初始流均设为 0。 // 事实上,任意可行的流都可以作为算法的初始流,快速构造接近最大流的可行流能大大提高算法效率。 bool netflow(int source, int sink, int nTotal) { int maxFlow = 0, volume; initializeSearch(); breadthFirstSearch(source, sink); volume = pathVolume(source, sink); while (volume) { maxFlow += volume; augmentPath(source, sink, volume); initializeSearch(); breadthFirstSearch(source, sink); volume = pathVolume(source, sink); } return maxFlow == nTotal; } int main(int ac, char *av[]) { int nCategories, nProblems; int nTotal, nCount, nType; int category[MAXCATEGORY]; // 每种类别的题目数量要求。 int problem[MAXCATEGORY]; // 每种类型的现有题目数量。 int source, sink; bool solvable; while (cin >> nCategories >> nProblems, nCategories || nProblems) { source = nTotal = 0; sink = nCategories + nProblems + 1; memset(degree, 0, sizeof(degree)); memset(problem, 0, sizeof(problem)); for (int i = 1; i <= nCategories; i++) { cin >> category[i]; nTotal += category[i]; // 源点到类别。 edges[source][degree[source]++] = (edge){i, category[i], 0, category[i]}; edges[i][degree[i]++] = (edge){source, category[i], 0, 0}; } for (int i = nCategories + 1; i <= (nCategories + nProblems); i++) { cin >> nCount; for (int j = 1; j <= nCount; j++) { cin >> nType; problem[nType]++; // 类别到题目。 edges[nType][degree[nType]++] = (edge){i, 1, 0, 1}; edges[i][degree[i]++] = (edge){nType, 1, 0, 0}; } // 题目到汇点。 edges[i][degree[i]++] = (edge){sink, 1, 0, 1}; edges[sink][degree[sink]++] = (edge){i, 1, 0, 0}; } if (nCategories == 0) { cout << SOLVABLE << "\n"; continue; } if (nProblems == 0) { cout << UNSOLVABLE << "\n"; continue; } // 若某类型的题目数量少于要求的总数,则肯定不可解。 solvable = true; for (int i = 1; i <= nCategories; i++) if (problem[i] < category[i]) { solvable = false; break; } if (solvable == false) { cout << UNSOLVABLE << "\n"; continue; } solvable = netflow(source, sink, nTotal); cout << (solvable ? SOLVABLE : UNSOLVABLE) << "\n"; if (!solvable) continue; for (int i = 1; i <= nCategories; i++) { int blank = 0; for (int j = 0; j < degree[i]; j++) { if (edges[i][j].residual == 0) { cout << (blank++ ? " " : ""); cout << (edges[i][j].vertex - nCategories); } } cout << "\n"; } } return 0; }