- 宝塔服务器调优工具 1.1(Opcache优化)
拍客圈
服务器运维
第一步:宝塔服务器调优工具1.1(按照下面的参数填写)第二步:路径/www/server/php/80/etc/php.ini搜索jit=jit=1235其中1235根据服务器情况修改第三步:路径/www/server/php/80/etc/php-cli.ini搜索jit=1235其中1235必须和宝塔服务器调优工具jit里面填写的数字一样注意:必须临时关掉宝塔系统加固和企业防篡改(不然修改不成
- 2021-09-28 网安实验-杂项-SCTF-Misc400A
愚公搬代码
愚公系列-网络安全实验测试工具windows
相关知识WireSharkWireshark是一个网络数据包分析软件,即通常所说的抓包软件。Wireshark可以抓取通过制定网卡的所有网络数据包,并根据数据包的格式尽可能显示出最为详细的信息,其支持各种主流的网络通信协议。Wireshark使用WinPCAP作为接口,直接与网卡进行数据交换。Wireshark提供了显示过滤控制,使用tcpcontains".rar"过滤器可以过滤含有.rar字符
- Centos 系统安装 Python3.8.5
程序视界Up
centoslinuxpython
1.准备编译环境及配置环境依赖yuminstallgccpatchlibffi-develpython-develzlib-develbzip2-developenssl-develncurses-develsqlite-develreadline-develtk-develgdbm-develdb4-devellibpcap-develxz-devel-y2.下载Python的源码包并解压参考地
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- PHP性能工程与高可用架构深度优化
seopthonshentong
android
#PHP性能工程与高可用架构深度优化在前八篇系列教程的基础上,本文将深入探讨PHP在大规模生产环境中的性能工程实践和高可用架构设计,帮助开发者构建能够应对百万级流量的企业级应用。##1.极致性能优化策略###JIT编译深度调优```ini;php.iniJIT配置opcache.jit=1205opcache.jit_buffer_size=256Mopcache.jit_debug=0opcac
- TIP-2025《Data Subdivision Based Dual-Weighted Robust Principal Component Analysis》
Christo3
机器学习人工智能机器学习算法
核心思想分析这篇论文提出了一个新颖的主成分分析(PCA)方法,称为DataSubdivisionBasedDual-WeightedRobustPrincipalComponentAnalysis(DRPCA),旨在解决传统PCA在处理包含噪声和异常值的数据时的鲁棒性问题。其核心思想包括以下几个方面:数据细分与双权重机制:传统PCA假设数据已中心化,并使用平方l2l_2l2-范数,这对噪声和异常值
- S7协议抓包分析与pcap数据包资源
仲毓俏Alanna
S7协议抓包分析与pcap数据包资源S7协议抓包分析附pcap数据包项目地址:https://gitcode.com/Resource-Bundle-Collection/8d948本文档提供了一个关于S7协议抓包分析的详细介绍,并附带了相关的pcap数据包文件。S7协议是西门子专有协议,主要用于西门子S7-300/400系列可编程逻辑控制器(PLC)之间的通信。通过分析S7协议的抓包数据,可以深
- C++ 中的类型转换: static_cast dynamic_cast const_cast reinterpret_cast
程序员乐逍遥
C++高手修炼营C/C++网络编程专题C/C++多线程编程专题c++开发语言类型转换
C++提供了四种主要的类型转换操作符:static_cast、dynamic_cast、const_cast和reinterpret_cast。1.static_cast用法:static_cast是最常用的类型转换操作符,用于编译时已知类型的转换。无法移除const修饰的类型。常见用途:基本数据类型之间的转换(如int到float)指针或引用在类层次结构中的向上转型(upcasting)枚举与整
- 如何启用Laravel 12的OPcache?
深山技术宅
性能调优LaravelPHP经验laravelphp
在Laravel12中启用OPcache需要服务器和PHP层面的配置,以下是详细步骤:一、服务器环境要求PHP8.2+(Laravel12要求)OPcache扩展已安装(通常PHP8.x默认包含)二、检查OPcache状态php-i|grepopcache#应看到类似输出:opcache.enable=>On=>Onopcache.enable_cli=>On=>On三、配置OPcache(php
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- Pandas能进行数据降维?新手如何简化分析模型?
程序化交易助手
量化软件量化投资程序化交易Python量化软件PTradeQMT量化交易量化炒股deepseek
Pandas能进行数据降维?新手如何简化分析模型?引言在量化交易的世界里,数据是一切分析的基础。但面对海量的数据,如何快速有效地提取关键信息,简化分析模型,是每个新手都需要面对的挑战。今天,我们就来聊聊如何利用Pandas这个强大的Python库来进行数据降维,以及如何简化我们的分析模型。Pandas与数据降维Pandas是Python中用于数据分析和操作的一个库,它提供了丰富的数据结构和数据分析
- Linux免驱使用PCAN,使用方法以Ubuntu为例
Linux免驱使用PCAN,使用方法以Ubuntu为例,连接设备后,可使用ifconfig-a命令查询设备号(仅连接一个CAN设备时,一般为CAN0)。如果没有显示,说明系统缺少依赖。安装依赖:SocketCAN驱动程序:这是Linux内核中实现CAN协议栈的模块,通常在大多数Linux发行版中已经默认启用。can-utils工具:一个用于测试和调试CAN总线通信的工具集。安装依赖命令:sudoa
- 深度学习笔记
疯狂成瘾者
深度学习笔记人工智能
文章目录聚类导入模块生成模拟数据建立并训练K-Means聚类模型创建图形绘制散点图(聚类结果)获取聚类中心可视化聚类中心设置图形标题和标签输出效果数据降维一、常见的数据降维方法二、Python降维示例(用PCA将3D数据降至2D)✅第1部分:导入模块✅第2部分:生成模拟数据✅第3部分:PCA降维处理✅第4部分:开始绘图✅第5部分:绘制散点图✅第6部分:完善图像细节并显示✨最终效果数据降维的作用✅一
- 小黄鸟抓包学习过程
lemon_sjdk
安卓学习
今天学习的是小黄鸟的抓包。需要工具:MagiskHttpCanary爱玩机工具箱虚拟机软件(例如vmos)问题:安卓7.0之后,系统安全策略升级,默认只信任系统证书,我们安装的证书是用户证书,造成https无法抓包解决方式:下载好上述的软件之后,开始操作:首先打开小黄鸟,然后导出系统证书,然后打开爱玩机工具箱,打开之后按照图片所示,全部打开这些功能(需要手机连接电脑然后输入命令即可)然后找到Mag
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- python打卡day21
荣582
python学习打卡python开发语言
@疏锦行自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。fromsklearn.manifoldimportTSNEfromsklearn.decompositionimportPCAimportmatplotlib.pyplotasplt#假设X是特征数据,y是标签数据#进行PCA
- android获取摄像头id,Camera2 上cameraid问题。
seiji morisako
我可以打开默认摄像头,但是打不开其他的摄像头。privatevoidopenCamera(finalintwidth,finalintheight){setUpCameraOutputs(width,height);configureTransform(width,height);finalCameraManagermanager=(CameraManager)getSystemService(C
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 机器学习速成课程----数据准备
oceanstonetree
python人工智能机器学习教程
目录在7天内使用Python进行数据准备。第1课:数据准备的重要性第2课:通过插补填充缺失值第3课:使用RFE选择特征第4课:使用规范化缩放数据第5课:使用热编码(One-Hot)转换类别第6课:使用kBins将数字转换为类别第7课:使用PCA进行降维在在7天内使用Python进行数据准备。数据准备涉及将原始数据转换为更适合建模的形式。数据准备可能是预测建模项目中最重要的部分,也是最耗时的过程,尽
- 基于PCA和Kmeans的餐馆地区分类研究
1.实践任务说明对《中国2019年分地区连锁餐饮企业数据》中的7个经营指标(V2-V8)进行主成分分析(PCA),通过降维提取核心特征。首先标准化数据,然后计算主成分的方差贡献率,按累积贡献率≥85%确定保留的主成分数量,最终输出降维后的主成分得分及因子载荷矩阵,简化后续分析。基于K-Means聚类算法对餐饮企业数据进行分析,首先读取true_restaurant.csv文件中的PC1指标数据并进
- 无网络环境怎么yum安装/配置yum源
KK溜了溜了
网络服务器linux
一、有网络环境开启缓存1、修改/etc/yum.conf把keepcache=0改成keepcache=12、yum安装软件就可以缓存rpm包了3、包路径保存在/var/cache/yum/x86_64/7/base/packages二、上传缓存包至无网络环境服务器目录/yum/三、无网络环境配置yum源cd/yum/到rpm包所在目录createrepo./vim/etc/yum.repos.d
- 分布式网络通信框架(五)——Mprpc框架基础类设计
APX7409
C/C++分布式c++服务器
需求我们希望我们实现的mprpc可以像下面这样被使用:intmain(intargc,char**argv){//调用框架的初始化操作MprpcApplication::Init(argc,argv);//provider是一个rpc网络服务对象,把UserService对象发布到rpc节点上RpcProviderprovider;provider.NotifyService(newUserSer
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- 5.11 day17
知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参()将聚类后的特征添加到原数据中原则t-sne或者pca进行2D或3D可视化KMeans和层次聚类的参数是K值,选完k指标
- 5.15 day21
AщYΘ
人工智能算法
知识点回顾:LDA线性判别PCA主成分分析t-sne降维自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。一、何时需要使用降维?1.数据高维困境维度灾难(CurseofDimensionality):当特征维度超过样本数量时,模型容易过拟合存储与计算成本:高维数据需要更多存储空间,算法
- 机器学习——主成分分析 PCA
Nil0_
机器学习
目录简介一、基本原理1.数据变换2.协方差矩阵3.特征值和特征向量实施步骤应用选择主成分的数量二、代码实现优缺点分析优点缺点总结简介主成分分析(PCA)是机器学习领域中的一种重要算法,主要应用于数据的降维和特征提取。PCA的目的是通过保留数据集中的主要信息,将高维数据集转换为低维数据集,从而简化模型训练和提高模型性能。一、基本原理1.数据变换PCA通过线性变换将原始数据映射到新的特征空间,这个变换
- Python-字符串常用方法
2501_92004703
Pythonpython开发语言
Python-字符串常用方法前言一、字符串判断1.isalpha2.isalnum3.isdigit4.isnumeric5.isdecimal6.isspace7.istitle8.isidentifier9.islower,isupper10.startswith,endswith二、大小写转换1.lower,upper2.title3.captitalize4.swapcase三、查找与替换
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 基于LDA特征提取的人脸识别算法matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理matlabLDA特征提取人脸识别
目录一、理论基础2.1PCA特征提取2.2LDA特征提取1.3实现步骤二、核心程序三、仿真结论一、理论基础人脸识别技术是一种广泛应用于安防、金融、医疗等领域的技术,它可以识别出人脸图像中的人物身份信息。基于LDA特征提取的人脸识别算法是一种常用的人脸识别方法,它通过对人脸图像进行特征提取,从而实现人脸识别。本文将从数学公式和实现步骤两个方面,详细介绍基于LDA特征提取的人脸识别算法。2.1PCA特
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发