Zygote进程启动过程源代码分析

Zygote进程介绍


在Android系统中,存在不同的服务,这些服务可以分为:

Zygote进程启动过程源代码分析_第1张图片

Android系统借用Binder通信机制实现了C/S架构设计,客户端应用程序如需要实现某些功能,只需请求指定的服务,由服务端来实现。Android服务包括以上的系统服务和应用服务,系统服务是指Android系统在启动过程就已经启动实现了的服务,对于系统服务又分为Java服务和本地服务,其实很好区分,Java服务是由Java代码编写而成,由SystemServer进程提供,而本地服务是由C/C++实现的服务,由Init进程在系统启动时启动的服务。应用服务是由开发者自行实现的某些特定服务。对于本地系统服务,我们知道它们是由Init进程来启动的,那对于Java系统服务,又是如何启动的呢?

Zygote进程启动过程源代码分析_第2张图片

所有的应用程序进程以及系统服务进程SystemServer都是由Zygote进程孕育(fork)出来的,zygote和system_server分别是Java世界的半边天,任何一个进程的死亡都会导致Java崩溃。zygote本身是Native应用程序,与驱动内核无关。zygote进程对应的具体程序是“app_process”,这个可执行文件名称在Android.mk文件中指定,在Zygote进程启动时,将进程名称设置为"zygote"。
我们知道,Android系统是基于Linux内核的,而在Linux系统中,所有的进程都是init进程的子孙进程,也就是说,所有的进程都是直接或者间接地由init进程fork出来的。Zygote进程也不例外,它是在系统启动的过程,由init进程创建的。在系统启动脚本system/core/rootdir/init.rc文件中。

//关键字service告诉init进程创建一个名为"zygote"的进程,这个zygote进程要执行的程序是/system/bin/app_process,后面是要传给app_process的参数。
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server   //socket关键字表示这个zygote进程需要一个名称为"zygote"的socket资源,这样,系统启动后,我们就可以在/dev/socket目录下看到有一个名为zygote的文件。这里定义的socket的类型为unix domain socket,它是用来作本地进程间通信用的
    socket zygote stream 666
    critical
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
    onrestart restart mlistener
-Xzygote:该参数将作为虚拟机启动时所需的参数;
/system/bin:代表虚拟机程序所在目录;
--zygote:指明以ZygoteInit.java类中的main函数作为虚拟机执行入口;
--start-system-server:告诉Zygote进程启动SystemServer进程;

Zygote进程执行代码:
frameworks\base\cmds\app_process\App_main.cpp
frameworks\base\core\jni\AndroidRuntime.cpp
frameworks\base\core\java\com\android\internal\os\ZygoteInit.java

Zygote启动分为两个阶段:
1. 虚拟机启动 --- 通过native启动
startVm(&mJavaVM, &env) 启动虚拟机
onVmCreated(env)         虚拟机启动后的初始化
startReg(env)             注册JNI函数
env->CallStaticVoidMethod(startClass, startMeth, strArray) 调用ZygoteInit类的main函数开创java世界 
2.SystemServer进程 --- 通过Java启动
registerZygoteSocket() 为zygote进程注册监听socket
preload()            加载常用的JAVA类和系统资源
startSystemServer()    启动SystemServer进程
runSelectLoopMode()  进入循环监听模式
closeServerSocket()    进程退出时,关闭socket监听

Zygote进程启动过程源代码分析_第3张图片

Zygote进程包含两个主要模块:

  1. Socket服务端,该Socket服务端用于接收启动新的Dalvik进程命令。

  2. Framework共享类及共享资源,当Zygote进程启动后,会装载一些共享类和资源,共享类是在preload-classes文件中定义的,共享资源是在preload-resources文件中定义。因为其他Dalvik进程是由Zygote进程孵化出来的,因此只要Zygote装载好了这些类和资源后,新的Dalvik进程就不需要在装载这些类和资源了,它们共享Zygote进程的资源和类。

app_process


App_main.cpp

Zygote进程是通过app_process启动的,app_process通过解析命令行参数,然后启动一个Android虚拟机,调用Java的入口函数从而启动一个进程,app_process也可以启动其他进程,比如monkey,am,pm等。

int main(int argc, const char* const argv[])
{
    //zygote 是由init进程fork而来,init.rc文件中为zygote进程设置的启动参数如下
    //argc = 4
    //argv = [-Xzygote, /system/bin, --zygote, --start-system-server]
    // These are global variables in ProcessState.cpp
    mArgC = argc;
    mArgV = argv;
    mArgLen = 0;
    for (int i=0; i<argc; i++) {
        mArgLen += strlen(argv[i]) + 1;
    }
    mArgLen--;
    AppRuntime runtime;
    const char* argv0 = argv[0];
    // ignore argv[0]
    argc--;
    argv++;
    // Everything up to '--' or first non '-' arg goes to the vm
	//添加虚拟机参数选项
    //addVmArguments(3, [/system/bin, --zygote, --start-system-server])结果返回 i=0
    int i = runtime.addVmArguments(argc, argv);
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    const char* parentDir = NULL;
    const char* niceName = NULL;
    const char* className = NULL;
    while (i < argc) {
        const char* arg = argv[i++];
        if (!parentDir) {//第一个参数为parentDir
            parentDir = arg;
		//表示启动zygote进程
        } else if (strcmp(arg, "--zygote") == 0) {
            zygote = true;
            niceName = "zygote";
		//表示启动SystemServer进程
        } else if (strcmp(arg, "--start-system-server") == 0) {
            startSystemServer = true;
		//表示启动应用程序进程
        } else if (strcmp(arg, "--application") == 0) {
            application = true;
		//进程名称
        } else if (strncmp(arg, "--nice-name=", 12) == 0) {
            niceName = arg + 12;
        } else {
		//剩余参数为启动类名称
            className = arg;
            break;
        }
    }
    if (niceName && *niceName) {
        setArgv0(argv0, niceName);
        set_process_name(niceName);//修改进程名称
    }
	// 设置虚拟机运行目录
    runtime.mParentDir = parentDir;
	//如果启动的是zygote进程
    if (zygote) {
        // do last shutdown check
        ALOGV("doLastShutDownCheck");
        doLastShutDownCheck(); 
		//调用Runtimed的start函数启动SystemServer进程,startSystemServer = true
        runtime.start("com.android.internal.os.ZygoteInit",startSystemServer ? "start-system-server" : "");
	//如果启动类名存在,
	//在Android中,monkey,am,pm这些命令是一个脚本文件,脚本的内容就是使用app_process启动一个进程
	//对于am:
	//export CLASSPATH=$base/framework/am.jar
	//exec app_process $base/bin com.android.commands.am.Am "$@"
	//argc = 2
	//argv = [$base/bin, com.android.commands.am.Am]
    } else if (className) {
        // Remainder of args get passed to startup class main()
        runtime.mClassName = className;
        runtime.mArgC = argc - i;
        runtime.mArgV = argv + i;
        runtime.start("com.android.internal.os.RuntimeInit",application ? "application" : "tool");
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
        return 10;
    }
}
这个函数的主要作用就是创建一个AppRuntime变量,然后调用它的start成员函数。AppRuntime类的声明和实现在App_main.cpp中,派生于AndroidRuntime类

Zygote进程启动过程源代码分析_第4张图片

从上面的代码可以知道,app_process就是通过启动一个Android虚拟机并加载相应的Java类来启动一个进程。


虚拟机启动过程


AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const char* options)
{
    blockSigpipe();
    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    if (strcmp(options, "start-system-server") == 0) {
        /* track our progress through the boot sequence */
        const int LOG_BOOT_PROGRESS_START = 3000;
        LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
    }
	//设置ANDROID_ROOT环境变量
    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";//如果获取结果为Null,则设置为"/system"
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);//重新设置环境变量ANDROID_ROOT
    }
	//启动虚拟机
    JNIEnv* env;
    if (startVm(&mJavaVM, &env) != 0) {
        return;
    }
    onVmCreated(env);
	//注册JNI函数
    if (startReg(env) < 0) {
        ALOGE("Unable to register all android natives\n");
        return;
    }
    //这里调用java类的main入口函数
    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;
    jstring optionsStr;
	//通过JNI查找java的java.lang.String类
    stringClass = env->FindClass("java/lang/String");
    assert(stringClass != NULL);
	//创建字符串数组String strArray[] = new String[2];
    strArray = env->NewObjectArray(2, stringClass, NULL);
    assert(strArray != NULL);
	//创建字符串classNameStr
	//对于zygote进程:  classNameStr = new String("com.android.internal.os.ZygoteInit")
	//对于启动应用进程:classNameStr = new String("com.android.internal.os.RuntimeInit")
    classNameStr = env->NewStringUTF(className);
    assert(classNameStr != NULL);
	//设置字符串数组元素strArray[0]
    env->SetObjectArrayElement(strArray, 0, classNameStr);
	//创建字符串optionsStr,对应进程启动参数
    optionsStr = env->NewStringUTF(options);
	//设置字符串数组元素strArray[1]
    env->SetObjectArrayElement(strArray, 1, optionsStr);
	//为符合JNI规范,将com.android.xxx中的.换成/,变为slashClassName = com/android/xxx
    char* slashClassName = toSlashClassName(className);
	//查找Java类com/android/xxx
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
    } else {
		//找到ZygoteInit类的静态main方法的jMethodID
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
		//在调用Java类的main方法后,zygote就进入了java世界
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);
        }
    }
    free(slashClassName);
    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK)
        ALOGW("Warning: unable to detach main thread\n");
    if (mJavaVM->DestroyJavaVM() != 0)
        ALOGW("Warning: VM did not shut down cleanly\n");
}
AndroidRuntime::start()中完成四个任务:
① startVm(&mJavaVM, &env) 启动虚拟机
② onVmCreated(env)        虚拟机启动后的初始化
③ startReg(env)           注册JNI函数
④ env->CallStaticVoidMethod(startClass, startMeth, strArray) 调用ZygoteInit类的main函数开创java世界

启动虚拟机


int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv)
{
    int result = -1;
    JavaVMInitArgs initArgs;
    JavaVMOption opt;
    char propBuf[PROPERTY_VALUE_MAX];
    char stackTraceFileBuf[PROPERTY_VALUE_MAX];
    char dexoptFlagsBuf[PROPERTY_VALUE_MAX];
    char enableAssertBuf[sizeof("-ea:")-1 + PROPERTY_VALUE_MAX];
    char jniOptsBuf[sizeof("-Xjniopts:")-1 + PROPERTY_VALUE_MAX];
    char heapstartsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
    char heapsizeOptsBuf[sizeof("-Xmx")-1 + PROPERTY_VALUE_MAX];
    char heapgrowthlimitOptsBuf[sizeof("-XX:HeapGrowthLimit=")-1 + PROPERTY_VALUE_MAX];
    char extraOptsBuf[PROPERTY_VALUE_MAX];
    char* stackTraceFile = NULL;
    bool checkJni = false;
    bool checkDexSum = false;
    bool logStdio = false;
    enum {
      kEMDefault,
      kEMIntPortable,
      kEMIntFast,
#if defined(WITH_JIT)
      kEMJitCompiler,
#endif
    } executionMode = kEMDefault;
    property_get("dalvik.vm.checkjni", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        checkJni = true;
    } else if (strcmp(propBuf, "false") != 0) {
        /* property is neither true nor false; fall back on kernel parameter */
        property_get("ro.kernel.android.checkjni", propBuf, "");
        if (propBuf[0] == '1') {
            checkJni = true;
        }
    }
    property_get("dalvik.vm.execution-mode", propBuf, "");
    if (strcmp(propBuf, "int:portable") == 0) {
        executionMode = kEMIntPortable;
    } else if (strcmp(propBuf, "int:fast") == 0) {
        executionMode = kEMIntFast;
#if defined(WITH_JIT)
    } else if (strcmp(propBuf, "int:jit") == 0) {
        executionMode = kEMJitCompiler;
#endif
    }
    property_get("dalvik.vm.stack-trace-file", stackTraceFileBuf, "");
    property_get("dalvik.vm.check-dex-sum", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        checkDexSum = true;
    }
    property_get("log.redirect-stdio", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        logStdio = true;
    }
    strcpy(enableAssertBuf, "-ea:");
    property_get("dalvik.vm.enableassertions", enableAssertBuf+4, "");
    strcpy(jniOptsBuf, "-Xjniopts:");
    property_get("dalvik.vm.jniopts", jniOptsBuf+10, "");
    /* route exit() to our handler */
    opt.extraInfo = (void*) runtime_exit;
    opt.optionString = "exit";
    mOptions.add(opt);
    /* route fprintf() to our handler */
    opt.extraInfo = (void*) runtime_vfprintf;
    opt.optionString = "vfprintf";
    mOptions.add(opt);
    /* register the framework-specific "is sensitive thread" hook */
    opt.extraInfo = (void*) runtime_isSensitiveThread;
    opt.optionString = "sensitiveThread";
    mOptions.add(opt);
    opt.extraInfo = NULL;
    /* enable verbose; standard options are { jni, gc, class } */
    //options[curOpt++].optionString = "-verbose:jni";
    opt.optionString = "-verbose:gc";
    mOptions.add(opt);
    //options[curOpt++].optionString = "-verbose:class";
    /*
     * The default starting and maximum size of the heap.  Larger
     * values should be specified in a product property override.
     */
    strcpy(heapstartsizeOptsBuf, "-Xms");
    property_get("dalvik.vm.heapstartsize", heapstartsizeOptsBuf+4, "4m");
    opt.optionString = heapstartsizeOptsBuf;
    mOptions.add(opt);
    strcpy(heapsizeOptsBuf, "-Xmx");
    property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");
    opt.optionString = heapsizeOptsBuf;
    mOptions.add(opt);
    // Increase the main thread's interpreter stack size for bug 6315322.
    opt.optionString = "-XX:mainThreadStackSize=24K";
    mOptions.add(opt);
    strcpy(heapgrowthlimitOptsBuf, "-XX:HeapGrowthLimit=");
    property_get("dalvik.vm.heapgrowthlimit", heapgrowthlimitOptsBuf+20, "");
    if (heapgrowthlimitOptsBuf[20] != '\0') {
        opt.optionString = heapgrowthlimitOptsBuf;
        mOptions.add(opt);
    }
    /*
     * Enable or disable dexopt features, such as bytecode verification and
     * calculation of register maps for precise GC.
     */
    property_get("dalvik.vm.dexopt-flags", dexoptFlagsBuf, "");
    if (dexoptFlagsBuf[0] != '\0') {
        const char* opc;
        const char* val;
        opc = strstr(dexoptFlagsBuf, "v=");     /* verification */
        if (opc != NULL) {
            switch (*(opc+2)) {
            case 'n':   val = "-Xverify:none";      break;
            case 'r':   val = "-Xverify:remote";    break;
            case 'a':   val = "-Xverify:all";       break;
            default:    val = NULL;                 break;
            }

            if (val != NULL) {
                opt.optionString = val;
                mOptions.add(opt);
            }
        }
        opc = strstr(dexoptFlagsBuf, "o=");     /* optimization */
        if (opc != NULL) {
            switch (*(opc+2)) {
            case 'n':   val = "-Xdexopt:none";      break;
            case 'v':   val = "-Xdexopt:verified";  break;
            case 'a':   val = "-Xdexopt:all";       break;
            case 'f':   val = "-Xdexopt:full";      break;
            default:    val = NULL;                 break;
            }

            if (val != NULL) {
                opt.optionString = val;
                mOptions.add(opt);
            }
        }
	...
	}
}


初始化虚拟机


virtual void onVmCreated(JNIEnv* env)
{
	//在启动zygote时,没有设置mClassName,
	if (mClassName == NULL) {
		return; // Zygote. Nothing to do here.
	}
	//在启动其他进程时,设置了Java启动类
	//将com.android.xxx中的.换成/,变为slashClassName = com/android/xxx
	char* slashClassName = toSlashClassName(mClassName);
	//查找Java类com/android/xxx,mClass为进程启动类
	mClass = env->FindClass(slashClassName);
	if (mClass == NULL) {
		ALOGE("ERROR: could not find class '%s'\n", mClassName);
	}
	free(slashClassName);
	//创建java类的全局引用,保存到mclass中
	mClass = reinterpret_cast<jclass>(env->NewGlobalRef(mClass));
}

注册JNI函数


创建好了虚拟机,因此需要给该虚拟机注册一些JNI函数。

int AndroidRuntime::startReg(JNIEnv* env)
{
    /*
     * This hook causes all future threads created in this process to be
     * attached to the JavaVM.  (This needs to go away in favor of JNI
     * Attach calls.) 设置线程创建函数为javaCreateThreadEtc
     */
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
    LOGV("--- registering native functions ---\n");
    /*
     * Every "register" function calls one or more things that return
     * a local reference (e.g. FindClass).  Because we haven't really
     * started the VM yet, they're all getting stored in the base frame
     * and never released.  Use Push/Pop to manage the storage.
     */
    env->PushLocalFrame(200);
    //注册JNI函数,所有的JNI函数存放在gRegJNI全局数组中
    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);
    //createJavaThread("fubar", quickTest, (void*) "hello");
    return 0;
}
JNI函数注册过程,循环调用gRegJNI数组中的每个元素的mProc方法
//JNI函数注册方法
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
    for (size_t i = 0; i < count; i++) {
        if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
            LOGD("----------!!! %s failed to load\n", array[i].mName);
#endif
            return -1;
        }
    }
    return 0;
}
使用宏REG_JNI将系统中所有JNI注册函数添加到JNI数组gRegJNI中。
//gRegJNI全局数组中
static const RegJNIRec gRegJNI[] = {
    REG_JNI(register_android_debug_JNITest),
    REG_JNI(register_com_android_internal_os_RuntimeInit),
    REG_JNI(register_android_os_SystemClock),
    REG_JNI(register_android_util_EventLog),
    REG_JNI(register_android_util_Log),
    REG_JNI(register_android_util_FloatMath),
    REG_JNI(register_android_text_format_Time),
    REG_JNI(register_android_pim_EventRecurrence),
    REG_JNI(register_android_content_AssetManager),
    REG_JNI(register_android_content_StringBlock),
    REG_JNI(register_android_content_XmlBlock),
    REG_JNI(register_android_emoji_EmojiFactory),
    REG_JNI(register_android_security_Md5MessageDigest),
    REG_JNI(register_android_text_AndroidCharacter),
    REG_JNI(register_android_text_AndroidBidi),
    REG_JNI(register_android_text_KeyCharacterMap),
    REG_JNI(register_android_os_Process),
    REG_JNI(register_android_os_Binder),
    REG_JNI(register_android_view_Display),
    REG_JNI(register_android_nio_utils),
    REG_JNI(register_android_graphics_PixelFormat),
    REG_JNI(register_android_graphics_Graphics),
    REG_JNI(register_android_view_Surface),
    REG_JNI(register_android_view_ViewRoot),
    REG_JNI(register_com_google_android_gles_jni_EGLImpl),
    REG_JNI(register_com_google_android_gles_jni_GLImpl),
    REG_JNI(register_android_opengl_jni_GLES10),
    REG_JNI(register_android_opengl_jni_GLES10Ext),
    REG_JNI(register_android_opengl_jni_GLES11),
    REG_JNI(register_android_opengl_jni_GLES11Ext),
    REG_JNI(register_android_opengl_jni_GLES20),
    ....
};


调用Java类的入口函数

AndroidRuntime通过JNI方式调用Java类的入口main函数,从此开辟了Java世界。在这里通过传递不同的启动类,就可以实现通过app_process启动不同的进程,前面分析app_process的main函数时,已经知道对于zygote进程来说,传递的启动类为com.android.internal.os.ZygoteInit,而如果是启动其他进程则传递的是com.android.internal.os.RuntimeInit。

Zygote进程启动


C++层调用Java层的ZygoteInit类的main函数,从此开辟了Java世界。

public static void main(String argv[]) {
//传入的参数argv = ["com.android.internal.os.ZygoteInit","true"]
	try {
	    //设置虚拟机的最小堆栈大小
	    VMRuntime.getRuntime().setMinimumHeapSize(5 * 1024 * 1024);
	    // Start profiling the zygote initialization.启动性能统计
	    SamplingProfilerIntegration.start();
	    //注册zygote等待客户端连接的socket
	    registerZygoteSocket();
	    EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START, SystemClock.uptimeMillis());
	    //预加载java类和资源
	    preloadClasses();
	    preloadResources();
	    EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,SystemClock.uptimeMillis());

	    // Finish profiling the zygote initialization.结束统计并生成结果文件  
	    SamplingProfilerIntegration.writeZygoteSnapshot();

	    // Do an initial gc to clean up after startup,执行垃圾回收
	    gc();

	    // If requested, start system server directly from Zygote
	    if (argv.length != 2) {
		throw new RuntimeException(argv[0] + USAGE_STRING);
	    }
	    if (argv[1].equals("true")) {
		//启动SystemServer进程
		startSystemServer();
	    } else if (!argv[1].equals("false")) {
		throw new RuntimeException(argv[0] + USAGE_STRING);
	    }
	    Log.i(TAG, "Accepting command socket connections");
	    //boolean ZYGOTE_FORK_MODE = false; 因此调用runSelectLoopMode()函数
	    if (ZYGOTE_FORK_MODE) {
		runForkMode();
	    } else {
		runSelectLoopMode();
	    }
	    closeServerSocket(); //关闭socket
	} catch (MethodAndArgsCaller caller) {
	    //捕获SytemServer进程调用RuntimeInit.java 中zygoteInit函数抛出的MethodAndArgsCaller异常
	    caller.run();
	} catch (RuntimeException ex) {
	    Log.e(TAG, "Zygote died with exception", ex);
	    closeServerSocket();
	    throw ex;
	}
}

在以上ZygoteInit类的main中完成以下五个工作:
① registerZygoteSocket() 为zygote进程注册监听socket
② preload()            加载常用的JAVA类和系统资源
③ startSystemServer()    启动SystemServer进程
④ runSelectLoopMode()  进入循环监听模式
⑤ closeServerSocket()    进程退出时,关闭socket监听 


启动Socket服务端口


zygote 并没有采用binder通信机制,而是采用基于AF_UNIX类型的socket通信方式

private static void registerZygoteSocket() {
	if (sServerSocket == null) {
	    int fileDesc;
	    try {
		//从环境变量中获取文件句柄,这个socket接口是通过文件描述符来创建的,这个文件描符代表的就是我们前面说的/dev/socket/zygote文件了。这个文件描述符是通过环境变量ANDROID_SOCKET_ENV得到的,关于socket的创建及环境变量的设置请参考init进程源码分析
		String env = System.getenv(ANDROID_SOCKET_ENV);
		fileDesc = Integer.parseInt(env);
	    } catch (RuntimeException ex) {
		throw new RuntimeException(ANDROID_SOCKET_ENV + " unset or invalid", ex);
	    }
	    try {
	        //创建服务端socket,该socket将监听并接受客户端请求
		sServerSocket = new LocalServerSocket(createFileDescriptor(fileDesc));
	    } catch (IOException ex) {
		throw new RuntimeException("Error binding to local socket '" + fileDesc + "'", ex);
	    }
	}
}

函数首先调用System.getenv()获取系统为Zygote进程分配的Socket文件描述符,然后调用createFileDescriptor(fileDesc)创建一个真正的Socket文件描述符。Socket的使用方式有:

1. 阻塞方式:使用listen()监听某个端口,然后调用read()函数从这个端口读取数据,当Socket端口没有数据时,read()函数将一直等待,直到读取到数据才返回;

2. 非阻塞方式:使用Linux系统调用select()函数监测Socket文件描述符,当该文件描述符上有数据时,自动触发中断,在中断处理函数中去读取文件描述符上的数据,LocalServerSocket就是对非阻塞式Socket的封装;


预加载类和资源


private static void preloadClasses() {
	final VMRuntime runtime = VMRuntime.getRuntime();
	//通过反射机制获取输入流,类资源文件为"preloaded-classes"
	InputStream is = ZygoteInit.class.getClassLoader().getResourceAsStream(PRELOADED_CLASSES);
	if (is == null) {
	    Log.e(TAG, "Couldn't find " + PRELOADED_CLASSES + ".");
	} else {
	    Log.i(TAG, "Preloading classes...");
	    long startTime = SystemClock.uptimeMillis();
	    // Drop root perms while running static initializers.
	    //设置有效组ID和有效用户ID
	    setEffectiveGroup(UNPRIVILEGED_GID);
	    setEffectiveUser(UNPRIVILEGED_UID);
	    // Alter the target heap utilization.  With explicit GCs this
	    // is not likely to have any effect.
	    float defaultUtilization = runtime.getTargetHeapUtilization();
	    runtime.setTargetHeapUtilization(0.8f);

	    // Start with a clean slate.
	    runtime.gcSoftReferences();
	    runtime.runFinalizationSync();
	    Debug.startAllocCounting();
	    try {
		BufferedReader br= new BufferedReader(new InputStreamReader(is), 256);

		int count = 0;
		String line;
		//一行一行读取文件内容
		while ((line = br.readLine()) != null) {
		    // Skip comments and blank lines.
		    line = line.trim();
		    if (line.startsWith("#") || line.equals("")) {
		        continue;
		    }
		    try {
		        if (Config.LOGV) {
		            Log.v(TAG, "Preloading " + line + "...");
		        }
		        //通过Java反射机制加载类,每一行储存的是类名
		        Class.forName(line);
		        if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
		            if (Config.LOGV) {
		                Log.v(TAG," GC at " + Debug.getGlobalAllocSize());
		            }
		            runtime.gcSoftReferences();
		            runtime.runFinalizationSync();
		            Debug.resetGlobalAllocSize();
		        }
		        count++;
		    } catch (ClassNotFoundException e) {
		        Log.w(TAG, "Class not found for preloading: " + line);
		    } catch (Throwable t) {
		        Log.e(TAG, "Error preloading " + line + ".", t);
		        if (t instanceof Error) {
		            throw (Error) t;
		        }
		        if (t instanceof RuntimeException) {
		            throw (RuntimeException) t;
		        }
		        throw new RuntimeException(t);
		    }
		}
		Log.i(TAG, "...preloaded " + count + " classes in "
		        + (SystemClock.uptimeMillis()-startTime) + "ms.");
	    } catch (IOException e) {
		Log.e(TAG, "Error reading " + PRELOADED_CLASSES + ".", e);
	    } finally {
		// Restore default.
		runtime.setTargetHeapUtilization(defaultUtilization);
		Debug.stopAllocCounting();
		// Bring back root. We'll need it later.
		setEffectiveUser(ROOT_UID);
		setEffectiveGroup(ROOT_GID);
	    }
	}
}

预装载的类列表保存在framework.jar中的名为preloaded-classes的文本文件中,该文件是通过framework/base/tools/prload/WritePreloadedClassFile.java类生成的,产生preloaded-classes文件的方法是在Android源码根目录执行以下命令:

java -Xss512M -cp out/host/linux-x86/framework/preload.jar WritePreloadedClassFile frameworks/base/tools/preload/20100223.compiled 
1517 classses were loaded by more than one app.
Added 147 more to speed up applications.
1664 total classes will be preloaded.
Writing object model...
Done!

最后生成frameworks/base/preloaded-classes文本文件。preloadClasses函数就是读取preloaded-classes文件,该文件中的每一行代表一个具体的类,然后通过Class.forName()装载这些类,preloadClasses 执行时间比较长,也是导致android系统启动慢的原因。


加载共享资源


private static void preloadResources() {
	final VMRuntime runtime = VMRuntime.getRuntime();
	Debug.startAllocCounting();
	try {
		if(LESS_GC) {
		System.gc();
		runtime.runFinalizationSync();
		}
		mResources = Resources.getSystem();
		mResources.startPreloading();
		if (PRELOAD_RESOURCES) {
			Log.i(TAG, "Preloading resources...");

			long startTime = SystemClock.uptimeMillis();
			//获取frameworks/base/core/res/res/values/arrays.xml中定义的数组preloaded_drawables
			TypedArray ar = mResources.obtainTypedArray(
					com.android.internal.R.array.preloaded_drawables);
			//加载drawable资源
			int N = preloadDrawables(runtime, ar);
			ar.recycle();
			Log.i(TAG, "...preloaded " + N + " resources in "
					+ (SystemClock.uptimeMillis()-startTime) + "ms.");
			startTime = SystemClock.uptimeMillis();
			//获取frameworks/base/core/res/res/values/arrays.xml中定义的数组preloaded_color_state_lists
			ar = mResources.obtainTypedArray(
					com.android.internal.R.array.preloaded_color_state_lists);
			//加载color资源
			N = preloadColorStateLists(runtime, ar);
			ar.recycle();
			Log.i(TAG, "...preloaded " + N + " resources in "
					+ (SystemClock.uptimeMillis()-startTime) + "ms.");
		}
		mResources.finishPreloading();
	} catch (RuntimeException e) {
		Log.w(TAG, "Failure preloading resources", e);
	} finally {
		Debug.stopAllocCounting();
	}
}
preload-resources实在frameworks/base/core/res/res/values/arrays.xml中定义的,包括drawable资源和color资源。函数调用preloadDrawables()来加载drawable资源,drawable资源定义:
 <array name="preloaded_drawables">
	 <item>@drawable/toast_frame_holo</item>
	 <item>@drawable/btn_check_on_pressed_holo_light</item>
	 <item>@drawable/btn_check_on_holo_light</item>
	 ....
 </array>

private static int preloadDrawables(VMRuntime runtime, TypedArray ar) {
	int N = ar.length();
	for (int i=0; i<N; i++) {
		if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
			if (false) {
				Log.v(TAG, " GC at " + Debug.getGlobalAllocSize());
			}
			if(LESS_GC) {
			System.gc();
			runtime.runFinalizationSync();
			Debug.resetGlobalAllocSize();
			}
		}
		int id = ar.getResourceId(i, 0);
		if (false) {
			Log.v(TAG, "Preloading resource #" + Integer.toHexString(id));
		}
		if (id != 0) {
			//将资源加载到mResources全局变量中
			Drawable dr = mResources.getDrawable(id);
			if ((dr.getChangingConfigurations()&~ActivityInfo.CONFIG_FONT_SCALE) != 0) {
				Log.w(TAG, "Preloaded drawable resource #0x"
						+ Integer.toHexString(id)
						+ " (" + ar.getString(i) + ") that varies with configuration!!");
			}
		}
	}
	return N;
}
接着调用preloadColorStateLists()来加载color资源。这些资源被保存到全局变量mResources中。
<array name="preloaded_color_state_lists">
	 <item>@color/primary_text_dark</item>
	 <item>@color/primary_text_dark_disable_only</item>
	 <item>@color/primary_text_dark_nodisable</item>
	 ....
</array>

private static int preloadColorStateLists(VMRuntime runtime, TypedArray ar) {
	int N = ar.length();
	for (int i=0; i<N; i++) {
		if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
			if (false) {
				Log.v(TAG, " GC at " + Debug.getGlobalAllocSize());
			}
			if(LESS_GC) {
			System.gc();
			runtime.runFinalizationSync();
			Debug.resetGlobalAllocSize();
			}
		}
		int id = ar.getResourceId(i, 0);
		if (false) {
			Log.v(TAG, "Preloading resource #" + Integer.toHexString(id));
		}
		if (id != 0) {
			//将资源加载到mResources全局变量中
			mResources.getColorStateList(id);
		}
	}
	return N;
}


启动SystemServer进程


 private static boolean startSystemServer()
            throws MethodAndArgsCaller, RuntimeException {
        /* Hardcoded command line to start the system server */
        String args[] = {
            "--setuid=1000",
            "--setgid=1000",
            "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,3001,3002,3003",
            "--capabilities=130104352,130104352",
            "--runtime-init",
            "--nice-name=system_server",
            "com.android.server.SystemServer",
        };
        ZygoteConnection.Arguments parsedArgs = null;
        int pid;
        try {
            parsedArgs = new ZygoteConnection.Arguments(args); //把字符串数组中的参数转换为Arguments对象
            /*
             * Enable debugging of the system process if *either* the command line flags
             * indicate it should be debuggable or the ro.debuggable system property
             * is set to "1"
             */
            int debugFlags = parsedArgs.debugFlags;
            if ("1".equals(SystemProperties.get("ro.debuggable")))
                debugFlags |= Zygote.DEBUG_ENABLE_DEBUGGER;

            /* fork一个子进程作为SystemServer进程*/
            pid = Zygote.forkSystemServer(
                    parsedArgs.uid, parsedArgs.gid,
                    parsedArgs.gids, debugFlags, null,
                    parsedArgs.permittedCapabilities,
                    parsedArgs.effectiveCapabilities);
        } catch (IllegalArgumentException ex) {
            throw new RuntimeException(ex);
        }
        /* For child process */
        if (pid == 0) {
 	    //SystemServer进程的初始化设置
            handleSystemServerProcess(parsedArgs);
        }
        return true;
    }

Zygote进程通过Zygote.forkSystemServer函数来创建一个新的进程来启动SystemServer组件,返回值pid等0的地方就是新的进程要执行的路径,即新创建的进程会执行handleSystemServerProcess函数。


循环等待客户端的连接

Zygote进程启动过程源代码分析_第5张图片
private static void runSelectLoopMode() throws MethodAndArgsCaller {
	ArrayList<FileDescriptor> fds = new ArrayList(); //存储所有socket文件句柄
	ArrayList<ZygoteConnection> peers = new ArrayList();//存储所有客户端连接
	FileDescriptor[] fdArray = new FileDescriptor[4];
	fds.add(sServerSocket.getFileDescriptor());//添加服务端socket文件描述符到fds中
	peers.add(null);
	int loopCount = GC_LOOP_COUNT;
	while (true) {
		int index;
		/*
		 * Call gc() before we block in select().
		 * It's work that has to be done anyway, and it's better
		 * to avoid making every child do it.  It will also
		 * madvise() any free memory as a side-effect.
		 *
		 * Don't call it every time, because walking the entire
		 * heap is a lot of overhead to free a few hundred bytes.
		 */
		if (loopCount <= 0) {
			gc();
			loopCount = GC_LOOP_COUNT;
		} else {
			loopCount--;
		}
		try {
			fdArray = fds.toArray(fdArray);
			//selectReadable内部调用select,使用多路复用I/O模型
			//当有客户端连接时,selectReadable返回
			index = selectReadable(fdArray);
		} catch (IOException ex) {
			throw new RuntimeException("Error in select()", ex);
		}
		if (index < 0) {
			throw new RuntimeException("Error in select()");
		} else if (index == 0) {
			//有一个客户端连接
			ZygoteConnection newPeer = acceptCommandPeer();
			peers.add(newPeer);
			fds.add(newPeer.getFileDesciptor());
		} else {
			boolean done;
			//客户端发送了请求,peers.get(index)获取当前客户端的ZygoteConnection,并调用当前连接的runOnce()函数创建新的应用程序
			done = peers.get(index).runOnce();

			if (done) {
				peers.remove(index);
				fds.remove(index);
			}
		}
	}
}

函数runSelectLoopMode()使Zygote进入非阻塞读取socket操作,函数selectReadable()用于监听服务端Socket文件描述是否有客户端的连接,该函数使用的是Linux多路I/O服务select系统调用:

do {
	err = select (nfds, &fdset, NULL, NULL, NULL);
} while (err < 0 && errno == EINTR);

当selectReadable返回-1时,表示内部错误;返回值为0时,表示没有可处理的连接;返回值大于0时,表示客户端连接的个数。

zygote总结:
1.创建AppRuntime对象,并调用它的start函数;
2.调用startVm创建Java虚拟机;
3.调用startReg函数来注册JNI函数;
4.调用ZygoteInit类的main函数,从此就进入了Java世界;
5.调用registerZygoteSocket 注册一个服务端socket;
6.调用preloadClasses 函数加载类资源;
7.调用preloadResources函数加载系统资源;
8.调用startSystemServer函数创建SystemServer进程;
9.调用runSelectLoopMode函数进入服务端socket监听;


Zygote孵化新进程


fork是Linux系统的系统调用,用于复制当前进程,产生一个新的进程。新进程被创建后,和父进程共享已经分配的内存空间,除了进程ID外,新进程拥有和父进程完全相同的进程信息,直到向内存写入数据时,操作系统才复制一份目标地址空间,并将要写的数据写入到新的地址空间中,这就是所谓的copy-on-write机制,这种机制最大限度地在多个进程中共享物理内存。fork函数的返回值大于0时,代表的是父进程,当等于0时,代表的是被复制的子进程,父子进程的区分就是通过fork的返回值来区分。当一个客户端进程请求Zygote孵化一个新的进程时,Zygote首先会得到该客户端的Socket连接,并将该连接封装为ZygoteConnection对象,并调用该对象的runOnce()函数来fork出一个新进程:done = peers.get(index).runOnce();

boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {

	String args[];
	Arguments parsedArgs = null;
	FileDescriptor[] descriptors;
	try {
		args = readArgumentList();
		descriptors = mSocket.getAncillaryFileDescriptors();
	} catch (IOException ex) {
		Log.w(TAG, "IOException on command socket " + ex.getMessage());
		closeSocket();
		return true;
	}
	if (args == null) {
		// EOF reached.
		closeSocket();
		return true;
	}
	/** the stderr of the most recent request, if avail */
	PrintStream newStderr = null;

	if (descriptors != null && descriptors.length >= 3) {
		newStderr = new PrintStream(
				new FileOutputStream(descriptors[2]));
	}
	int pid = -1;
	FileDescriptor childPipeFd = null;
	FileDescriptor serverPipeFd = null;
	try {
		parsedArgs = new Arguments(args);
		applyUidSecurityPolicy(parsedArgs, peer);
		applyRlimitSecurityPolicy(parsedArgs, peer);
		applyCapabilitiesSecurityPolicy(parsedArgs, peer);
		applyInvokeWithSecurityPolicy(parsedArgs, peer);
		applyDebuggerSystemProperty(parsedArgs);
		applyInvokeWithSystemProperty(parsedArgs);
		int[][] rlimits = null;
		if (parsedArgs.rlimits != null) {
			rlimits = parsedArgs.rlimits.toArray(intArray2d);
		}
		if (parsedArgs.runtimeInit && parsedArgs.invokeWith != null) {
			FileDescriptor[] pipeFds = Libcore.os.pipe();
			childPipeFd = pipeFds[1];
			serverPipeFd = pipeFds[0];
			ZygoteInit.setCloseOnExec(serverPipeFd, true);
		}
		//复制新进程
		pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
				parsedArgs.gids, parsedArgs.debugFlags, rlimits);
	} catch (IOException ex) {
		logAndPrintError(newStderr, "Exception creating pipe", ex);
	} catch (ErrnoException ex) {
		logAndPrintError(newStderr, "Exception creating pipe", ex);
	} catch (IllegalArgumentException ex) {
		logAndPrintError(newStderr, "Invalid zygote arguments", ex);
	} catch (ZygoteSecurityException ex) {
		logAndPrintError(newStderr,
				"Zygote security policy prevents request: ", ex);
	}
	try {
		//区分父子进程
		if (pid == 0) {
			// in child
			IoUtils.closeQuietly(serverPipeFd);
			serverPipeFd = null;
			handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr);
			// should never get here, the child is expected to either
			// throw ZygoteInit.MethodAndArgsCaller or exec().
			return true;
		} else {
			// in parent...pid of < 0 means failure
			IoUtils.closeQuietly(childPipeFd);
			childPipeFd = null;
			return handleParentProc(pid, descriptors, serverPipeFd, parsedArgs);
		}
	} finally {
		IoUtils.closeQuietly(childPipeFd);
		IoUtils.closeQuietly(serverPipeFd);
	}
}
forkAndSpecialize函数调用nativeForkAndSpecialize函数来创建一个新进程,nativeForkAndSpecialize是一个Native函数,该函数最终调用fork来复制一个进程。当Zygote复制出新进程时,由于复制出的新进程与Zygote进程共享内存空间,而在Zygote进程中创建的服务端Socket是新进程不需要的,因此新创建的进程需要关闭该Socket服务端,并调用为新进程指定的类文件的main入口函数。

Zygote进程启动过程源代码分析_第6张图片

普通进程启动


对应am工具,对应的脚本为:
base=/system
export CLASSPATH=$base/framework/am.jar
exec app_process $base/bin com.android.commands.am.Am "$@"
Android将使用app_process启动的普通进程分工具进程和普通进程两种类型,通过传递命令行参数来设置,在启动虚拟机时,传递的参数不同:
runtime.start("com.android.internal.os.RuntimeInit",application ? "application" : "tool");
对应工具进程,传递tool字符串,而对于普通进程则传递application字符串,同时进程启动的Java类为com.android.internal.os.RuntimeInit
public static final void main(String[] argv) {
	if (argv.length == 2 && argv[1].equals("application")) {
		if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application");
		redirectLogStreams();
	} else {
		if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting tool");
	}
	commonInit();
	//通过JNI调用C++函数,更换Java入口
	nativeFinishInit();
	if (DEBUG) Slog.d(TAG, "Leaving RuntimeInit!");
}
通过nativeFinishInit函数重新回到C++空间,并根据设置的启动Java类来更好入口函数
static void com_android_internal_os_RuntimeInit_nativeFinishInit(JNIEnv* env, jobject clazz)
{
    gCurRuntime->onStarted();
}

virtual void onStarted()
{
	sp<ProcessState> proc = ProcessState::self();
	ALOGV("App process: starting thread pool.\n");
	//启动Binder线程池
	proc->startThreadPool();
	AndroidRuntime* ar = AndroidRuntime::getRuntime();
	//更换Java入口类,在app_process的main函数中,如果启动的不是zygote进程,就为虚拟机设置了启动类及启动参数
	ar->callMain(mClassName, mClass, mArgC, mArgV);
	IPCThreadState::self()->stopProcess();
}
Java启动类的查找过程在onVmCreated(JNIEnv* env)函数中完成。对于am工具,其入口类为com.android.commands.am.Am.java,该类的main函数如下:
public static void main(String[] args) {
	try {
		(new Am()).run(args);
	} catch (IllegalArgumentException e) {
		showUsage();
		System.err.println("Error: " + e.getMessage());
	} catch (Exception e) {
		e.printStackTrace(System.err);
		System.exit(1);
	}
}
至此就启动了一个am进程。

你可能感兴趣的:(SystemServer,Zygote,app_process,应用程序进程)