input子系统四 input事件处理

  input事件处理流程 input driver -> input core ->event handler -> userspace 给应用程序。

一 事件分发跟踪

  核心层留给驱动层的上报接口是input_report_abs(),最终会调用input_event()。
void input_event(struct input_dev *dev,
		 unsigned int type, unsigned int code, int value)
{
	unsigned long flags;

	if (is_event_supported(type, dev->evbit, EV_MAX)) {

		spin_lock_irqsave(&dev->event_lock, flags);
		input_handle_event(dev, type, code, value);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
}

  先判断type是否支持,接着进入处理核心。

static void input_handle_event(struct input_dev *dev,
			       unsigned int type, unsigned int code, int value)
{
	int disposition;

	disposition = input_get_disposition(dev, type, code, value);

	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
		dev->event(dev, type, code, value);

	if (!dev->vals)
		return;

	if (disposition & INPUT_PASS_TO_HANDLERS) {
		struct input_value *v;

		if (disposition & INPUT_SLOT) {
			v = &dev->vals[dev->num_vals++];
			v->type = EV_ABS;
			v->code = ABS_MT_SLOT;
			v->value = dev->mt->slot;
		}

		v = &dev->vals[dev->num_vals++];
		v->type = type;
		v->code = code;
		v->value = value;
	}

	if (disposition & INPUT_FLUSH) {
		if (dev->num_vals >= 2)
			input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	} else if (dev->num_vals >= dev->max_vals - 2) {
		dev->vals[dev->num_vals++] = input_value_sync;
		input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	}

}
  input_get_disposition()获得事件处理者身份。INPUT_PASS_TO_HANDLERS表示交给input hardler处理,INPUT_PASS_TO_DEVICE表示交给input device处理,INPUT_FLUSH表示需要handler立即处理。如果事件正常一般返回的是INPUT_PASS_TO_HANDLERS,只有code为SYN_REPORT时返回INPUT_PASS_TO_HANDLERS | INPUT_FLUSH。需要说明的是下面一段:
	case EV_ABS:
		if (is_event_supported(code, dev->absbit, ABS_MAX))
			disposition = input_handle_abs_event(dev, code, &value);
static int input_handle_abs_event(struct input_dev *dev,
				  unsigned int code, int *pval)
{
	struct input_mt *mt = dev->mt;
	bool is_mt_event;
	int *pold;

	if (code == ABS_MT_SLOT) {
		/*
		 * "Stage" the event; we'll flush it later, when we
		 * get actual touch data.
		 */
		if (mt && *pval >= 0 && *pval < mt->num_slots)
			mt->slot = *pval;

		return INPUT_IGNORE_EVENT;
	}

	is_mt_event = input_is_mt_value(code);

	if (!is_mt_event) {
		pold = &dev->absinfo[code].value;
	} else if (mt) {
		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
	} else {
		/*
		 * Bypass filtering for multi-touch events when
		 * not employing slots.
		 */
		pold = NULL;
	}

	if (pold) {
		*pval = input_defuzz_abs_event(*pval, *pold,
						dev->absinfo[code].fuzz);
		if (*pold == *pval)
			return INPUT_IGNORE_EVENT;

		*pold = *pval;
	}

	/* Flush pending "slot" event */
	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
	}

	return INPUT_PASS_TO_HANDLERS;
}
  首先说明的是过滤处理,如果code不是ABS_MT_FIRST到ABS_MT_LAST之间,那就是单点上报(比如ABS_X);否则符合多点上报;它们的事件值value存储的位置是不一样的,所以取pold指针的方式是不一样的。(这个pold是过滤之后存的*pold = *pval;)。input_defuzz_abs_event()会对比当前value和上一次的old value;如果一样就过滤掉;不产生事件,但是只针对type B进行处理;type B的framework层sync后是不会清除slot的,所以要确保上报数据的准确;type A的sync后会清除slot。
  if (code == ABS_MT_SLOT)只记录当前传输的slot,就是id;mt->slot = *pval;为什么这样做?这是对多点上报type B的处理,type B report首先report的就是type=EV_ABS,code=ABS_MT_SLOT,还有触点id为参数;一般type B接下来会依次report ABS_MT_TRACKING_ID、ABS_MT_TOOL_TYPE、ABS_MT_POSITION_X、ABS_MT_POSITION_Y等。所以此时记录下这个触点id,等下次report ABS_MT_TRACKING_ID时会处理这个code,如果只单一处理code=ABS_MT_SLOT,对用户来说没有意义。report ABS_MT_TRACKING_ID时会一直走到最后return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;input_handle_event()里会根据INPUT_SLOT标志填充input_value v = &dev->vals[dev->num_vals++];将later的ABS_MT_SLOT补上。再下一个report ABS_MT_TOOL_TYPE时,是否会再走到这里来来补填一个ABS_MT_SLOT呢?看input_handle_abs_event()中最后的判断条件上次mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)的时候,就input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);,既然上一次已经set了新值,那此时条件就不成立了,所以只return INPUT_PASS_TO_HANDLERS,而不会再次填充一个code为ABS_MT_SLOT的input_value。
  回到input_handle_event(),填充&dev->vals[dev->num_vals++]中的一个input_value结构。code为SYN_REPORT时返回INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,所以会调用input_pass_values(dev, dev->vals, dev->num_vals)。如果指定了dev->grab指定了handle,就使用指定的;否则,遍历dev->h_list;找到dev上handle是open的,这个open什么时候设置?显然是应用层open的时候。dev->h_list的handle是在input device注册或者input handler注册的时候,匹配成功connect时,创建并初始化的,handle会把这两个结构联系到一起,继续执行input_to_handler()。
static unsigned int input_to_handler(struct input_handle *handle,
			struct input_value *vals, unsigned int count)
{
	struct input_handler *handler = handle->handler;
	struct input_value *end = vals;
	struct input_value *v;

	for (v = vals; v != vals + count; v++) {
		if (handler->filter &&
		    handler->filter(handle, v->type, v->code, v->value))
			continue;
		if (end != v)
			*end = *v;
		end++;
	}

	count = end - vals;
	if (!count)
		return 0;

	if (handler->events)
		handler->events(handle, vals, count);
	else if (handler->event)
		for (v = vals; v != end; v++)
			handler->event(handle, v->type, v->code, v->value);

	return count;
}
  首先过滤,相同事件都合并,然后交给handler->events或者handler->event处理;前者是成批处理,后者是单一事件处理。
static void evdev_events(struct input_handle *handle,
			 const struct input_value *vals, unsigned int count)
{
	struct evdev *evdev = handle->private;
	struct evdev_client *client;
	ktime_t time_mono, time_real;

	time_mono = ktime_get();
	time_real = ktime_sub(time_mono, ktime_get_monotonic_offset());

	rcu_read_lock();

	client = rcu_dereference(evdev->grab);

	if (client)
		evdev_pass_values(client, vals, count, time_mono, time_real);
	else
		list_for_each_entry_rcu(client, &evdev->client_list, node)
			evdev_pass_values(client, vals, count,
					  time_mono, time_real);

	rcu_read_unlock();
}
  如果指定了client就用指定的,这个client是指evdev_client,否则遍历evdev->client_list,放到client_list的client中。client_list中的client是什么时候挂上的?(evdev_open()->evdev_attach_client()->list_add_tail_rcu(&client->node, &evdev->client_list))接下来evdev_pass_values会把事情交给client处理。
static void evdev_pass_values(struct evdev_client *client,
			const struct input_value *vals, unsigned int count,
			ktime_t mono, ktime_t real)
{
	struct evdev *evdev = client->evdev;
	const struct input_value *v;
	struct input_event event;
	bool wakeup = false;

	event.time = ktime_to_timeval(client->clkid == CLOCK_MONOTONIC ?
				      mono : real);

	/* Interrupts are disabled, just acquire the lock. */
	spin_lock(&client->buffer_lock);

	for (v = vals; v != vals + count; v++) {
		event.type = v->type;
		event.code = v->code;
		event.value = v->value;
		__pass_event(client, &event);
		if (v->type == EV_SYN && v->code == SYN_REPORT)
			wakeup = true;
	}

	spin_unlock(&client->buffer_lock);

	if (wakeup)
		wake_up_interruptible(&evdev->wait);
}
  此时input_value需要转换为input_event;目的是为了添加时间信息。每个input_event都会__pass_event;收到SYNC后会设置wakeup标志,唤醒evdev->wait。这个wait也是connect时候初始化的,init_waitqueue_head(&evdev->wait);唤醒它干什么呢?因为用户如果读不到数据根据open标志O_NONBLOCK会发生阻塞;就是需要client中有数据时来唤醒。
static void __pass_event(struct evdev_client *client,
			 const struct input_event *event)
{
	client->buffer[client->head++] = *event;
	client->head &= client->bufsize - 1;

	if (unlikely(client->head == client->tail)) {
		/*
		 * This effectively "drops" all unconsumed events, leaving
		 * EV_SYN/SYN_DROPPED plus the newest event in the queue.
		 */
		client->tail = (client->head - 2) & (client->bufsize - 1);

		client->buffer[client->tail].time = event->time;
		client->buffer[client->tail].type = EV_SYN;
		client->buffer[client->tail].code = SYN_DROPPED;
		client->buffer[client->tail].value = 0;

		client->packet_head = client->tail;
		if (client->use_wake_lock)
			wake_unlock(&client->wake_lock);
	}

	if (event->type == EV_SYN && event->code == SYN_REPORT) {
		client->packet_head = client->head;
		if (client->use_wake_lock)
			wake_lock(&client->wake_lock);
		kill_fasync(&client->fasync, SIGIO, POLL_IN);
	}
}

client中一些字段的含义:
  packet_head:一个数据包头;
  head:动态索引,每加入一个event到buffer中,head++;
  tail:也是动态索引,每取出一个buffer中的event,tail++;
  buffer:event存储器,是一个环形区域。
  __pass_event会把数据放到client->buffer中。
  个人猜想:client->bufsize是一个2的次幂值,client->head &= client->bufsize - 1是为防止溢出,client->head == client->tail时,说明用户读的太快了,读的也是无效的。如果收到SYNC说明一个包结束了,更新一个包头packet_head,再上个锁wake_lock(&client->wake_lock);,这把锁在用户读取的时候会打开;向内核发送SIGIO,POLL_IN表示可读。
  事件的传递过程:首先在驱动层调用inport_report_abs,然后调用input core层的input_event,input_event调用了input_handle_event对事件进行分派,调用input_pass_event,在这里他会把事件传递给具体的handler层,然后在相应handler的event处理函数中,封装一个event,然后把它投入evdev的那个client_list上的client的事件buffer中,等待用户空间来读取。

二 用户空间获取跟踪

static const struct file_operations evdev_fops = {
	.owner		= THIS_MODULE,
	.read		= evdev_read,
	.write		= evdev_write,
	.poll		= evdev_poll,
	.open		= evdev_open,
	.release	= evdev_release,
	.unlocked_ioctl	= evdev_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= evdev_ioctl_compat,
#endif
	.fasync		= evdev_fasync,
	.flush		= evdev_flush,
	.llseek		= no_llseek,
};
  evdev_connect()的时候,cdev_init(&evdev->cdev, &evdev_fops);初始化了eventx字符设备的操作函数集。
static int evdev_open(struct inode *inode, struct file *file)
{
	struct evdev *evdev = container_of(inode->i_cdev, struct evdev, cdev);
	unsigned int bufsize = evdev_compute_buffer_size(evdev->handle.dev);
	struct evdev_client *client;
	int error;

	client = kzalloc(sizeof(struct evdev_client) +
				bufsize * sizeof(struct input_event),
			 GFP_KERNEL);
	if (!client)
		return -ENOMEM;

	client->bufsize = bufsize;
	spin_lock_init(&client->buffer_lock);
	snprintf(client->name, sizeof(client->name), "%s-%d",
			dev_name(&evdev->dev), task_tgid_vnr(current));
	client->evdev = evdev;
	evdev_attach_client(evdev, client);

	error = evdev_open_device(evdev);
	if (error)
		goto err_free_client;

	file->private_data = client;
	nonseekable_open(inode, file);

	return 0;

 err_free_client:
	evdev_detach_client(evdev, client);
	kfree(client);
	return error;
}
  evdev结构是怎么找到的?已知该结构中的cdev指针,找到这个结构;说明初始化evdev的时候,evdev->cdev就对应这个eventx;这也是connect做的事情。bufsize就是max(dev->hint_events_per_packet * EVDEV_BUF_PACKETS, EVDEV_MIN_BUFFER_SIZE);之后转化成2的次幂。终于看到client登场了。evdev_attach_client()->list_add_tail_rcu(&client->node, &evdev->client_list);把自己挂到了evdev->client_list上。这样,pass event的时候才能找到对应的client。
static int evdev_open_device(struct evdev *evdev)
{
	int retval;

	retval = mutex_lock_interruptible(&evdev->mutex);
	if (retval)
		return retval;

	if (!evdev->exist)
		retval = -ENODEV;
	else if (!evdev->open++) {
		retval = input_open_device(&evdev->handle);
		if (retval)
			evdev->open--;
	}

	mutex_unlock(&evdev->mutex);
	return retval;
}
  显然evdev->exist = true;也是connect时候做的事情。如果open成功会更新evdev->open计数。
int input_open_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;
	int retval;

	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->going_away) {
		retval = -ENODEV;
		goto out;
	}

	handle->open++;

	if (!dev->users++ && dev->open)
		retval = dev->open(dev);

	if (retval) {
		dev->users--;
		if (!--handle->open) {
			/*
			 * Make sure we are not delivering any more events
			 * through this handle
			 */
			synchronize_rcu();
		}
	}

 out:
	mutex_unlock(&dev->mutex);
	return retval;
}
  回到了核心层,主要是更新handle->open和dev->users计数,成功open返回0,一层一层的返回0,返回到evdev_open()中file->private_data = client;猜测是为了read的时候找到这个client。
static ssize_t evdev_read(struct file *file, char __user *buffer,
			  size_t count, loff_t *ppos)
{
	struct evdev_client *client = file->private_data;
	struct evdev *evdev = client->evdev;
	struct input_event event;
	size_t read = 0;
	int error;

	if (count != 0 && count < input_event_size())
		return -EINVAL;

	for (;;) {
		if (!evdev->exist)
			return -ENODEV;

		if (client->packet_head == client->tail &&
		    (file->f_flags & O_NONBLOCK))
			return -EAGAIN;

		/*
		 * count == 0 is special - no IO is done but we check
		 * for error conditions (see above).
		 */
		if (count == 0)
			break;

		while (read + input_event_size() <= count &&
		       evdev_fetch_next_event(client, &event)) {

			if (input_event_to_user(buffer + read, &event))
				return -EFAULT;

			read += input_event_size();
		}

		if (read)
			break;

		if (!(file->f_flags & O_NONBLOCK)) {
			error = wait_event_interruptible(evdev->wait,
					client->packet_head != client->tail ||
					!evdev->exist);
			if (error)
				return error;
		}
	}

	return read;
}
  果然第一件事就是找到evdev_client;就是evdev_open的时候记录的。*evdev = client->evdev也是evdev_open的时候记录的。input_event_size()是一个event的最小size,是input_event_compat或input_event结构的size,小于这个size的read操作无需理会。用了一个for循环,如果没有读到数据open的时候file->f_flags & O_NONBLOCK以非阻塞方式open会调用wait_event_interruptible()会阻塞到这里,等到client中有数据会唤醒它,前面已经说过了。如果evdev_open成功,evdev->exist会设置就继续走。一直走到了一个while循环,evdev_fetch_next_event()是从client中取出event。
static int evdev_fetch_next_event(struct evdev_client *client,
				  struct input_event *event)
{
	int have_event;

	spin_lock_irq(&client->buffer_lock);

	have_event = client->packet_head != client->tail;
	if (have_event) {
		*event = client->buffer[client->tail++];
		client->tail &= client->bufsize - 1;
		if (client->use_wake_lock &&
		    client->packet_head == client->tail)
			wake_unlock(&client->wake_lock);
	}

	spin_unlock_irq(&client->buffer_lock);

	return have_event;
}
  如果packet_head和tail不等,说明循环buffer里有数据,直接取出来,别忘了更新动态索引client->tail++。如果首尾相接了,说明数据读完了。wake_unlock(&client->wake_lock);;因为_pass_event中添加_event的时候上了一把锁wake_lock(&client->wake_lock);。
  接着evdev_read,已经取到event,就可以送到用户空间了。input_event_to_user()也是通过copy_to_user()实现的,这个函数很眼熟啊。一直read到读够了count个数据或者读完了一个包,client->packet_head == client->tail就表示这个包读完了。如果两个进程打开同一个文件,每个进程在open时都会生成一个evdev_client,evdev_client被挂在evdev的client_list上,在handle收到一个事件的时候,会把事件copy到挂在client_list上的所有evdev_client的buffer中。这样所有打开同一个设备的进程都会收到这个消息而唤醒。

你可能感兴趣的:(linux驱动)