联合体union在立体几何中的妙用

联合体union在立体几何中的妙用

为了更好地理解三维游戏编程,我开始研究了立体几何,注意,是立体解析几何,里面涉及到了很多元组、向量和矩阵的知识。虽然还有一些不懂,可是这唤醒了我在高等数学中学到的知识,我想以后还是有很大的用处的。

当然,数学是工具,是为我们编程服务的。但是出于对性能和简洁性的敏感,在构建数学库的过程中我千方百计减少我们的代码量。在我所学的封装、继承和多态以及模板中进行选择,其中一个鲜有接触的关键字union映入了我的眼帘。

union,即联合体,主要是为了解决相同的内容用不同的符号访问的问题。在union的内部,多个成员共享相同的内存,有利于实现该联合体用途的多样性。此外联合体可以用来判断大端和小端的问题:

#include <iostream>
union Test
{
    int i;
    char a;
};
int main( int, char** )
{
    using namespace std;
    cout << "本程序用来判断是否是大端(Big Endian)还是小端(Small Endian)。\n" << '\n';
    Test aTest;
    aTest.i = 1;
    if ( aTest.a == 1 )
        cout << "此计算机是小端。\n";
    else cout << "此计算机是大端。\n";
    return 0;
}

在这个例子中,如果是小端,那么1放在低字节,这样charainti都可以访问到,否则charainti访问的是不同的内容。则为大端。

在构建我的3D数学库的时候,我曾经考虑,使用一个通用的类模板Tuple表示元组,通过模板参数234将其实例化为不同维数的元组。可是除了三维坐标,其它的比如说Size、和Color都可以用元组来表示,那么有什么办法可以让我们少写代码呢?在看了union的用法后,我想到何不使用union来完成这个任务?

// 以下代码需要高级版本C++编译器支持
template <typename T, int n>
union Tuple
{
    T m[n];
};
// 特化
template <typename T>
union Tuple<T, 2>
{
    Tuple( void ){ }
    Tuple( T _1, T _2 )
    {
        Set( _1, _2 );
    }
    void Set( T _1, T _2 )
    {
        m[0] = _1, m[1] = _2;
    }
    operator T*( void ) // 重载类型转换函数
    {
        return m;
    }
    Tuple operator+( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] + obj.m[0];
        ret.m[1] = m[1] + obj.m[1];
        return ret;
    }
    Tuple operator-( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] - obj.m[0];
        ret.m[1] = m[1] - obj.m[1];
        return ret;
    }
    Tuple& operator+=( const Tuple& obj )
    {
        m[0] += obj.m[0];
        m[1] += obj.m[1];
        return *this;
    }
    //-------------------------------------
    T m[2];
    struct
    {
        T x, y;
    };
    struct
    {
        T w, h;
    };
};
template <typename T>
union Tuple<T, 3>
{
    Tuple( void ){ }
    Tuple( T _1, T _2, T _3 )
    {
        Set( _1, _2, _3 );
    }
    void Set( T _1, T _2, T _3 )
    {
        m[0] = _1, m[1] = _2, m[2] = _3;
    }
    operator T*( void ) // 重载类型转换函数
    {
        return m;
    }
    Tuple operator+( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] + obj.m[0];
        ret.m[1] = m[1] + obj.m[1];
        ret.m[2] = m[2] + obj.m[2];
        return ret;
    }
    Tuple operator-( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] - obj.m[0];
        ret.m[1] = m[1] - obj.m[1];
        ret.m[2] = m[2] - obj.m[2];
        return ret;
    }
    Tuple operator*( const T& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] * obj;
        ret.m[1] = m[1] * obj;
        ret.m[2] = m[2] * obj;
        return ret;
    }
    Tuple operator-( void )
    {
        return Tuple( -m[0], -m[1], -m[2] );
    }
    Tuple& operator+=( const Tuple& obj )
    {
        m[0] += obj.m[0];
        m[1] += obj.m[1];
        m[2] += obj.m[2];
        return *this;
    }
    //-------------------------------------
    T m[3];
    struct
    {
        T x, y, z;
    };
    struct
    {
        T r, g, b;
    };
};
template <typename T>
union Tuple<T, 4>
{
    Tuple( void ){ }
    Tuple( T _1, T _2, T _3, T _4 )
    {
        Set( _1, _2, _3, _4 );
    }
    void Set( T _1, T _2, T _3, T _4 )
    {
        m[0] = _1, m[1] = _2, m[2] = _3, m[3] = _4;
    }
    operator T*( void ) // 重载类型转换函数
    {
        return m;
    }
    Tuple operator+( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] + obj.m[0];
        ret.m[1] = m[1] + obj.m[1];
        ret.m[2] = m[2] + obj.m[2];
        ret.m[3] = m[3] + obj.m[3];
        return ret;
    }
    Tuple operator-( const Tuple& obj ) const// 重载减号
    {
        Tuple ret;
        ret.m[0] = m[0] - obj.m[0];
        ret.m[1] = m[1] - obj.m[1];
        ret.m[2] = m[2] - obj.m[2];
        ret.m[3] = m[3] - obj.m[3];
        return ret;
    }
    Tuple& operator+=( const Tuple& obj )
    {
        m[0] += obj.m[0];
        m[1] += obj.m[1];
        m[2] += obj.m[2];
        m[3] += obj.m[3];
        return *this;
    }
    //-------------------------------------
    T m[4];
    struct
    {
        T x, y, z, w;
    };
    struct
    {
        T r, g, b, a;
    };
};
// 定义数据类型
typedef Tuple<float, 2> Vector2F, Point2F, Size2F;
typedef Tuple<float, 3> Vector3F, Color3F, Point3F;
typedef Tuple<float, 4> Vector4F, Color4F;

在上面的代码中,我尝试了将联合体和模板相结合,使用了模板偏特化的技术。此外还在union中嵌入了无名的结构体。比如Tuple<float,3>,我既可以访问Tuple<float,3>::xTuple<float,3>::yTuple<float,3>::z,也可以访问Tuple<float,3>::rTuple<float,3>::gTuple<float,3>::b。所以用typedef定义向量和颜色,成员可以完全不同,但是它们所指向的内容是相同的。

上述代码可以很顺利地通过,如果你使用的是微软的VC6.0编译器,那么无法支持模板偏特化的特性。此外,一些IDE的自动补全功能在推测联合体模板的成员时候会失效。比如我的QtCreator2.6就无法正确地推测成员。

你可能感兴趣的:(联合体union在立体几何中的妙用)