图像处理之图像快速插值放缩算法

算法思想:

基于双线性算法的分解,分别进行水平与垂直两个方向的放缩,完成对整张图像的放大或

者缩小。基于的数学思想为矩阵的乘法,对一个scale矩阵可以拆分为水平与垂直方向的两

个关联矩阵,具体如下:

图像处理之图像快速插值放缩算法_第1张图片

关于什么是双线性插值参加这里:http://blog.csdn.net/jia20003/article/details/6915185

程序解释:

类ScaleFilter完成对图像的快速放大与缩小,接受输入参数为XY方向的放缩比例值。

hscal, vscale的默认值为1.5f即将输入图像在XY放大1.5倍。XY方向的Scale方法参考与运用

了移动窗口的算法。感兴趣可以自己研究,我也是改写一段c语言代码得到。感觉非常的精妙。

程序效果如下:


Scale Filter的源代码如下:

package com.gloomyfish.filter.study;
/**
 * @author gloomyfish
 * @date 2012-09-23
 * @BLOGPAGE:http://blog.csdn.net/jia20003
 */
import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;

public class ScaleFilter extends AbstractBufferedImageOp {
	
	/**
	 * default will zoom in 2.0 * input size of original image.
	 */
	private float hscale = 1.5f;
	private float vscale = 1.5f;
	public ScaleFilter() {
		
	}
	
	public void setHscale(float hscale) {
		this.hscale = hscale;
	}

	public void setVscale(float vscale) {
		this.vscale = vscale;
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
        	dest = createCompatibleDestImage( src, null );

        // initialization pixel data
        int[] inPixels = new int[width*height];
        int outwidth = (int)(hscale * (float)width);
        int outheight = (int)(vscale * (float)height);
        int[] outhPixels = new int[outwidth*height];
        int[] outPixels = new int[outwidth*outheight];

        // start to zoom in/out here
        getRGB( src, 0, 0, width, height, inPixels );
        hscale(inPixels, outhPixels, width, height);
        vscale(outhPixels, outPixels, outwidth, height);

        // create buffered image and return it with result image data 
        setRGB( dest, 0, 0, outwidth, outheight, outPixels);
        return dest;
	}
	
    public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) {
        if ( dstCM == null )
            dstCM = src.getColorModel();
        int outwidth = (int)(hscale * (float)src.getWidth());
        int outheight = (int)(vscale * (float)src.getHeight());
        return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(outwidth, outheight), dstCM.isAlphaPremultiplied(), null);
    }
	
	private void hscale(int[] input, int[] output, int width, int height) {
		int ta1 = 0, tr1 = 0, tg1 = 0, tb1 = 0;
		int ta2 = 0, tr2 = 0, tg2 = 0, tb2 = 0;
		int sumred = 0, sumgreen = 0, sumblue = 0;
		double accred = 0, accgreen = 0, accblue = 0;
		int p, q;
		int outwidth = (int)(this.hscale * width);
		double area = (outwidth * width);
		int inCol = 0, outCol = 0;
		int inIndex1 = 0, inIndex2 = 0, outIndex = 0;
		for (int row = 0; row < height; row++) {
			q = width;
			p = outwidth;
			accred = accgreen = accblue = 0;
			inCol = outCol = 0;
			while (outCol < outwidth) {
				if(outCol == 299) {
					System.out.println("what are you doing...");
				}
				if ((inCol + 1) < 2) {
					inIndex1 = row * width + inCol;
					inIndex2 = row * width + (inCol + 1);
	        		ta1 = (input[inIndex1] >> 24) & 0xff;
	                tr1 = (input[inIndex1] >> 16) & 0xff;
	                tg1 = (input[inIndex1] >> 8) & 0xff;
	                tb1 = input[inIndex1] & 0xff;
	                
	        		ta2 = (input[inIndex2] >> 24) & 0xff;
	                tr2 = (input[inIndex2] >> 16) & 0xff;
	                tg2 = (input[inIndex2] >> 8) & 0xff;
	                tb2 = input[inIndex2] & 0xff;
	                sumred = p * tr1 + (outwidth - p) * tr2;
	                sumgreen = p * tg1 + (outwidth - p) * tg2;
	                sumblue = p * tb1 + (outwidth - p) * tb2;
				}
				else 
				{
					inIndex1 = row * width + inCol;
	        		ta1 = (input[inIndex1] >> 24) & 0xff;
	                tr1 = (input[inIndex1] >> 16) & 0xff;
	                tg1 = (input[inIndex1] >> 8) & 0xff;
	                tb1 = input[inIndex1] & 0xff;
	                sumred = outwidth * tr1;
	                sumgreen = outwidth * tg1;
	                sumblue = outwidth * tb1;
				}
				if (p < q) {
					accred += sumred * p;
					accgreen += sumgreen * p;
					accblue += sumblue * p;
					q -= p;
					p = outwidth;
					inCol++;
				} else {
					accred += sumred * q;
					accgreen += sumgreen * q;
					accblue += sumblue * q;
					outIndex = row * outwidth + outCol;
					output[outIndex] = ta1 << 24 | ((int)(accred / area) << 16) | ((int)(accgreen / area) << 8) | (int)(accblue / area);
					accred = accgreen = accblue = 0;
					p -= q;
					q = width;
					outCol++;
				}
			}
		}
	}

	private void vscale(int[] input, int[] output, int width, int height) {
		int ta1 = 0, tr1 = 0, tg1 = 0, tb1 = 0;
		int ta2 = 0, tr2 = 0, tg2 = 0, tb2 = 0;
		int sumred = 0, sumgreen = 0, sumblue = 0;
		double accred = 0, accgreen = 0, accblue = 0;
		int inRow = 0, outRow = 0;
		int inIndex1 = 0, inIndex2 = 0, outIndex = 0;
		int p, q;
		int ih = height;
		int oh = (int)(height * vscale);
		int area = (ih * oh);
		for (int col = 0; col < width; col++) {
			q = ih;
			p = oh;
			accred = accgreen = accblue = 0;
			inRow = outRow = 0;
			while (outRow < oh) {
				if (inRow+1 < ih) {
					inIndex1 = inRow * width + col;
					inIndex2 = (inRow+1) * width + col;
	        		ta1 = (input[inIndex1] >> 24) & 0xff;
	                tr1 = (input[inIndex1] >> 16) & 0xff;
	                tg1 = (input[inIndex1] >> 8) & 0xff;
	                tb1 = input[inIndex1] & 0xff;
	                
	        		ta2 = (input[inIndex2] >> 24) & 0xff;
	                tr2 = (input[inIndex2] >> 16) & 0xff;
	                tg2 = (input[inIndex2] >> 8) & 0xff;
	                tb2 = input[inIndex2] & 0xff;
	                sumred = p * tr1 + (oh - p) * tr2;
	                sumgreen = p * tg1 + (oh - p) * tg2;
	                sumblue = p * tb1 + (oh - p) * tb2;
				}
				else
				{
					inIndex1 = inRow * width + col;
	        		ta1 = (input[inIndex1] >> 24) & 0xff;
	                tr1 = (input[inIndex1] >> 16) & 0xff;
	                tg1 = (input[inIndex1] >> 8) & 0xff;
	                tb1 = input[inIndex1] & 0xff;
	                sumred = oh * tr1;
	                sumgreen = oh * tg1;
	                sumblue = oh * tb1;
				}
				if (p < q) {
					accred += sumred * p;
					accgreen += sumgreen * p;
					accblue += sumblue * p;
					q -= p;
					p = oh;
					inRow++;
				} else {
					accred += sumred * q;
					accgreen += sumgreen * q;
					accblue += sumblue * q;
					outIndex = outRow * width + col;
					
					output[outIndex] = ta1 << 24 | ((int)(accred / area) << 16) | ((int)(accgreen / area) << 8) | (int)(accblue / area);
					accred = accgreen = accblue = 0;
					p -= q;
					q = ih;
					outRow++;
				}
			}
		}		
	}
}
后注:其效果近似与双线性内插值算法,但是运行速度却是它的几十倍之多,感兴趣者

可以自己测试。证明我没有信口开河。

你可能感兴趣的:(算法,null,input,float,initialization,图像处理)