- KVM+GFS分布式存储系统构建KVM高可用
henan程序媛
分布式GFS高可用KVM
一、案列分析1.1案列概述本章案例主要使用之前章节所学的KVM及GlusterFs技术,结合起来从而实现KVM高可用。利用GlusterFs分布式复制卷,对KVM虚拟机文件进行分布存储和冗余。分布式复制卷主要用于需要冗余的情况下把一个文件存放在两个或两个以上的节点,当其中一个节点数据丢失或者损坏之后,KVM仍然能够通过卷组找到另一节点上存储的虚拟机文件,以保证虚拟机正常运行。当节点修复之后,Glu
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- linux挂载文件夹
小码快撩
linux
1.使用NFS(NetworkFileSystem)NFS是一种分布式文件系统协议,允许一个系统将其文件系统的一部分共享给其他系统。检查是否安装NFSrpm-qa|grepnfs2.启动和启用NFS服务假设服务名称为nfs-server.service,你可以使用以下命令启动和启用它:sudosystemctlstartnfs-server.servicesudosystemctlenablenf
- nfs服务搭建
GHope
nfs是什么?基哥度娘网络文件系统(NFS)是sun微系统最初开发的分布式文件系统协议,[1]允许客户端计算机上的用户通过计算机网络访问文件很像本地存储被访问。NFS与许多其他协议一样,在开放网络计算远程过程调用(很久以前RPC)系统上建立。NFS是在请求注释(RFC)中定义的开放标准,允许任何人实现协议。NFSNFS优势:节省本地存储空间,将常用的数据存放在一台NFS服务器上且可以通过网络访问,
- 掌握检索技术:构建高效知识检索系统的架构与算法23
是小旭啊
人工智能
在检索专业知识层需要涵盖更高级的检索技术,包括工程架构和算法策略。一、工程架构工程架构在构建检索系统中决定了系统的可扩展性、高可用性和性能。比如需要考虑的基本点:分布式架构:水平扩展:采用分布式架构,将检索任务分布到多个节点上,实现水平扩展。这可以通过将索引数据分片存储在不同的节点上,并使用分布式文件系统或对象存储来存储大规模的索引数据。任务分配:设计任务调度器,负责将查询请求分配到空闲的节点上进
- 掌握检索技术:构建高效知识检索系统的架构与算法21
是小旭啊
人工智能
在检索专业知识层需要涵盖更高级的检索技术,包括工程架构和算法策略。一、工程架构工程架构在构建检索系统中决定了系统的可扩展性、高可用性和性能。比如需要考虑的基本点:分布式架构:水平扩展:采用分布式架构,将检索任务分布到多个节点上,实现水平扩展。这可以通过将索引数据分片存储在不同的节点上,并使用分布式文件系统或对象存储来存储大规模的索引数据。任务分配:设计任务调度器,负责将查询请求分配到空闲的节点上进
- KVM+GFS分布式存储系统构建 KVM 高可用
wkysdhr
分布式
一、案例分析本案例主要使用KVM及GlusterFS技术,结合起来从而实现KVM高可用。利用GlusterFs分布式复制卷,对KVM虚拟机文件进行分布存储和冗余。分布式复制卷主要用于需要冗余的情况下把一个文件存放在两个或两个以上的节点,当其中一个节点数据丢失或者损坏之后,KVM仍然能够通过卷组找到另一节点上存储的虚拟机文件,以保证虚拟机正常运行。当节点修复之后,GlusterFS会自动同步同一组卷
- 大数据分析与安全分析
Zh&&Li
网络安全运维数据分析安全数据挖掘运维数据库
大数据分析一、大数据安全威胁与需求分析1.1大数据相关概念发展大数据:是指非传统的数据处理工具的数据集大数据特征:海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等大数据的种类和来源非常多,包括结构化、半结构化和非结构化数据有关大数据的新兴网络信息技术应用不断出现,主要包括大规模数据分析处理、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和存储系统1.2大数据安全威胁分析“数
- 千万级规模高性能、高并发的网络架构经验分享
搬砖养女人
网络架构经验分享
主题:INTO100沙龙时间:2015年11月21日下午地点:梦想加联合办公空间分享人:卫向军(毕业于北京邮电大学,现任微博平台架构师,先后在微软、金山云、新浪微博从事技术研发工作,专注于系统架构设计、音视频通讯系统、分布式文件系统和数据挖掘等领域。)架构以及我理解中架构的本质在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们
- 深入解析HDFS:定义、架构、原理、应用场景及常用命令
CloudJourney
hdfs架构hadoop
引言Hadoop分布式文件系统(HDFS,HadoopDistributedFileSystem)是Hadoop框架的核心组件之一,它提供了高可靠性、高可用性和高吞吐量的大规模数据存储和管理能力。本文将从HDFS的定义、架构、工作原理、应用场景以及常用命令等多个方面进行详细探讨,帮助读者全面深入地了解HDFS。1.HDFS的定义1.1什么是HDFSHDFS是Hadoop生态系统中的一个分布式文件系
- Hadoop HDFS中的NameNode、SecondaryNameNode和DataNode
BigDataMLApplication
大数据hadoophadoophdfs大数据
HadoopHDFS中的NameNode、SecondaryNameNode和DataNode目录1.定义2.主要作用3.官方链接1.定义在HadoopHDFS(Hadoop分布式文件系统)中,有三个关键的组件:NameNode、SecondaryNameNode和DataNode。NameNodeNameNode是HDFS的主要组件之一,负责管理文件系统的命名空间、存储文件的元数据信息以及处理客
- 分布式文件系统FastDFS动态扩容
欢醉
当用户量越来越大,则集群中某个group总会到达其极限,这时就得扩展集群的容量了。FastDFS的扩容分为对group纵向扩容和横向扩容纵向扩容指在同一个group组中增加服务器,实现数据冗余,数据备份。同一个group中最大容量取决于最小的storage的存储容量。因此如果还想继续使用此group,则需要对此group对应的所有服务器挂载同样容量的磁盘,指定store_path1……,但这样做的
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- k8s 存储(PV、PVC、SC、本地存储、NFS)
大江东去了吗
kubernetesjavalinux
存储持久化相关三个概念:PersistentVolume(PV)是对具体存储资源的描述,比如NFS、Ceph、GlusterFS等,通过PV可以访问到具体的存储资源;PersistentVolumeClaim(PVC)Pod想要使用具体的存储资源需要对接到PVC,PVC里会定义好Pod希望使用存储的属性,通过PVC再去申请合适的存储资源(PV),匹配到合适的资源后PVC和PV会进行绑定,它们两者是
- 大数据面试题:说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?
蓦然_
大数据面试题hive大数据开发面试题大数据面试
1、为什么要使用Hive?Hive是Hadoop生态系统中比不可少的一个工具,它提供了一种SQL(结构化查询语言)方言,可以查询存储在Hadoop分布式文件系统(HDFS)中的数据或其他和Hadoop集成的文件系统,如MapR-FS、Amazon的S3和像HBase(Hadoop数据仓库)和Cassandra这样的数据库中的数据。大多数数据仓库应用程序都是使用关系数据库进行实现的,并使用SQL作为
- JuiceFS 社区版 v1.2 发布,新增企业级权限管理、平滑升级功能
Juicedata
云原生运维
JuiceFS社区版v1.2今天正式发布,这是自2021年开源以来的第三个大版本。v1.2也是一个长期支持版本(LTS)。我们将持续维护v1.2以及v1.1这两个版本,v1.0将停止更新。JuiceFS是为云环境设计的分布式文件系统,支持超过10种元数据引擎和30种以上的数据存储引擎。这些丰富的选择使得用户可以灵活应对多变的企业环境和数据存储需求;同时,JuiceFS兼容多种访问协议,包括POSI
- 大数据学习|理解和对比 Apache Hive 和 Apache Iceberg
进击的小白菜
数据库大数据大数据学习apache
文章目录数据模型与存储事务支持性能优化使用场景总结数据模型与存储Hive:Hive使用的是传统的关系型数据模型,数据存储在Hadoop分布式文件系统(HDFS)中,通常是以文本格式(如CSV或TSV)或者二进制格式(如Parquet或ORC)。Hive的表定义和元数据存储在一个外部的关系数据库中,如MySQL,用于跟踪表结构、分区和其他元数据信息。Iceberg:Iceberg设计为一个现代的表格
- 虚拟机安装hadoop,hbase(单机伪集群模式)
流~星~雨
大数据相关hadoophbase大数据
虚拟机安装Hadoop,Hbase工作中遇到了大数据方面的一些技术栈,没有退路可言,只能去学习掌握它,就像当初做爬虫一样(虽然很简单),在数据爆发的现在,传统的数据库mysql,oracle显然在处理大数据量级的数据时显得力不从心,所以有些特定的业务需要引进能够处理大数据量的数据库,hadoop提供了分布式文件系统(HDFS)来存储数据,又提供了分布式计算框架(mapreduce)来对这些数据进行
- 云原生应用(7)之Docker容器数据持久化存储机制
技术路上的苦行僧
云原生应用与架构设计云原生docker容器docker容器数据持久化
一、Docker容器数据持久化存储介绍物理机或虚拟机数据持久化存储由于物理机或虚拟机本身就拥有大容量的磁盘,所以可以直接把数据存储在物理机或虚拟机本地文件系统中,亦或者也可以通过使用额外的存储系统(NFS、GlusterFS、Ceph等)来完成数据持久化存储。Docker容器数据持久化存储由于Docker容器是由容器镜像生成的,所以一般容器镜像中包含什么文件或目录,在容器启动后,我们依旧可以看到相
- Hdfs的机架感知与副本放置策略
sheansavage
hdfshadoop大数据
1.介绍Apachehadoop机架感知Hadoop分布式文件系统(Hdfs)作为ApacheHadoop生态系统的的核心组件之一,通过机架感知和副本放置策略来优化数据的可靠性,可用和性能.Hdfs的机架感知和副本放置策略是其设计的关键组成部分,有效地提高了数据的可靠性,可用性和性能,使其成为处理大规模数据的理想选择.2.机架感知2.1什么是机架感知Hadoop组件时机架感知的.例如,hdfs块放
- Django 后端架构开发:存储层调优策略解析
Switch616
PythonWebdjango架构python数据库中间件后端sqlite
Django后端架构开发:存储层调优策略解析目录数据库读写分离实现与优化分布式文件系统在Django中的应用与优化Elasticsearch存储层优化策略前端页面静态化处理数据库读写分离实现与优化数据库读写分离是一种优化数据库性能的常见手段,特别是在高并发的情况下,能够有效地分担主库的压力。读写分离通常通过将写操作指向主库,读操作指向从库的方式来实现。Django提供了丰富的支持,可以通过配置多个
- HDFS的编程
卍king卐然
hdfshadoop大数据安全web安全经验分享
一、HDFS原理HDFS(HadoopDistributedFileSystem)是hadoop生态系统的一个重要组成部分,是hadoop中的的存储组件,在整个Hadoop中的地位非同一般,是最基础的一部分,因为它涉及到数据存储,MapReduce等计算模型都要依赖于存储在HDFS中的数据。HDFS是一个分布式文件系统,以流式数据访问模式存储超大文件,将数据分块存储到一个商业硬件集群内的不同机器上
- Hadoop 的基本 shell 命令
难以触及的高度
hadoop大数据分布式
Hadoop的基本shell命令主要用于与Hadoop分布式文件系统(HDFS)和MapReduce进行交互。以下是一些常用的Hadoopshell命令:一、HDFS命令1.查看HDFS状态`hdfsdfsadmin-report`:显示HDFS的健康状态和容量信息。2.文件系统操作`hdfsdfs-ls[path]`:列出指定路径下的文件和目录。`hdfsdfs-du[path]`:显示指定路径
- 【RH134知识点问答题】第9章 访问网络附加存储
是芽芽哩!
LinuxRH134管理2知识点问答题linux运维服务器bash
目录1.NFS的主要功能是什么?2.如何安装与配置NFS?3.说出手动挂载NFS的必要步骤。4.说出自动挂载NFS的必要步骤。5.说明创建自动挂载时的间接映射和直接映射的主要区别。1.NFS的主要功能是什么?NFS是一种分布式文件系统协议,主要功能包括:①允许远程计算机通过网络访问共享文件。②实现文件系统在客户端和服务器之间的透明访问。③支持文件的共享、读取和写入,使得多个计算机可以共享相同的文件
- 服务器虚拟化和云平台,云平台和服务器虚拟化区别
木子Hui
服务器虚拟化和云平台
云平台和服务器虚拟化区别内容精选换一换云硬盘(ElasticVolumeService,EVS)可以为云服务器提供高可靠、高性能、规格丰富并且可弹性扩展的块存储服务,可满足不同场景的业务需求,适用于分布式文件系统、开发测试、数据仓库以及高性能计算等场景。云服务器包括弹性云服务器和裸金属服务器。云硬盘类似PC中的硬盘,需要挂载至云服务器使用,无法单独使用。您可以对已挂载的用户可以为虚拟IP地址绑定一
- HDFS
weixin_51987187
笔记大数据
(一)HDFS简介及其基本概念 HDFS(HadoopDistributedFileSystem)是hadoop生态系统的一个重要组成部分,是hadoop中的的存储组件,在整个Hadoop中的地位非同一般,是最基础的一部分,因为它涉及到数据存储,MapReduce等计算模型都要依赖于存储在HDFS中的数据。HDFS是一个分布式文件系统,以流式数据访问模式存储超大文件,将数据分块存储到一个商业硬件
- SeaweedFS部署
仙女陈
linux
SeaweedFS介绍SeaweedFS是一个分布式文件系统应用场景:主要用于存储处理小文件、大文件分块成小文件上传Githup地址:https://github.com/chrislusf/seaweedfs官方文档:https://github.com/chrislusf/seaweedfs/wikiseaweedfs源码解析:https://www.bbsmax.com/A/6pdDYXQK
- 论文阅读-Hydra: 用于持久内存和RDMA网络的分散文件系统
向来痴_
负载均衡论文网络
论文名称:Hydra:ADecentralizedFileSystemforPersistentMemoryandRDMANetworks摘要新兴的字址持久内存(PM)有可能颠覆内存和存储之间的边界。结合高速RDMA网络,分布式基于PM的存储系统提供了通过紧密耦合PM和RDMA特性来实现存储性能大幅提升的机会。然而,现有的分布式文件系统采用为传统磁盘设计的传统集中式客户端-服务器架构,导致访问延迟
- 以内存为核心的开源分布式存储系统
这次靠你了
大数据Tachyonhdfs大数据
是一个以内存为核心的开源分布式存储系统,也是目前发展最迅速的开源大数据项目之一。Tachyon为不同的大数据计算框架(如ApacheSpark,HadoopMapReduce,ApacheFlink等)提供可靠的内存级的数据共享服务。此外,Tachyon还能够整合众多现有的存储系统(如AmazonS3,ApacheHDFS,RedHatGlusterFS,OpenStackSwift等),为用
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比