图像处理软件开发记录(二) 基本图像处理

专栏地址:http://blog.csdn.net/column/details/imagep.html

本篇博客主要记录Image图像处理软件的基本图像处理,包括黑白图像、图像柔化、图像锐化。


图像黑白化

现在我们得到的大多数图像都是彩色图像,那么如果想要把它变成黑白图像,该怎么操作呢?

一个简单的方法就是——利用cvtColor实现。

cvtColor的原型如下:

C++: void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0 )

在cvtColor中利用CV_BGR2GRAY, CV_RGB2GRAY就可以实现从RGB图像转换为黑白图像。

转换公式如下:



Code:

void MainWindow::on_actionBlackWhite_triggered()
{
    cv::Mat bw;
    cv::cvtColor(image,bw,CV_BGR2GRAY);
    QImage bimg = QImage((const uchar*)(bw.data),bw.cols,bw.rows,QImage::Format_Indexed8);
    ui->Imagedisplaylabel->setPixmap(QPixmap::fromImage(bimg));
    //ui->Imagedisplaylabel->setScaledContents(true);
    //ui->Imagedisplaylabel->resize(ui->Imagedisplaylabel->width(),ui->Imagedisplaylabel->height());

}


Example:

图像处理软件开发记录(二) 基本图像处理_第1张图片图像处理软件开发记录(二) 基本图像处理_第2张图片


References:

彩色空间及cvtColor解析




图像柔化

图像柔化其实也就是图像模糊(平滑),算是一个非常简单的操作。


Code:

void MainWindow::on_actionSmooth_triggered()
{
    cv::Mat Smooth;
    cv::namedWindow("Ori");
    cv::imshow("Ori",image);
    cv::GaussianBlur(image,Smooth,cv::Size(5,5),5);
    cv::namedWindow("S");
    cv::imshow("S",Smooth);
}


Example:

图像处理软件开发记录(二) 基本图像处理_第3张图片




图像锐化

所谓图像锐化就是要突出图像的边缘信息,加强图像的轮廓特征,以便于人眼的识别。图像锐化是与图像平滑相反的一类处理。它主要分为:空域处理方法和频域处理方法。这里要讲的是类似Photoshop的unsharpe mask锐化,从概念上讲,unsharpe mask就是首先从原图上生成一个模糊拷贝,用原图减去这个拷贝,得到原图的边界,类似于经过一次高斯过滤查找到图像的边界。这个图像边界就是我们需要的mask。

整个锐化过程如下所示:

图像处理软件开发记录(二) 基本图像处理_第4张图片

(上图改进方案见文献Image Enhancement via Adaptive Unsharp Masking)

一个简单的实例:

图像处理软件开发记录(二) 基本图像处理_第5张图片

Code:

void MainWindow::on_actionSharpe_triggered()
{
    cv::namedWindow("ori_s");
    cv::imshow("ori_s",image);
    cv::Mat sharpe;
    cv::GaussianBlur(image,sharpe,cv::Size(5,5),5);
    cv::addWeighted(image,1.5,sharpe,-0.6,0,sharpe);
    cv::namedWindow("sharpe");
    cv::imshow("sharpe",sharpe);
}

Example:

图像处理软件开发记录(二) 基本图像处理_第6张图片


References:

SHARPENING: UNSHARP MASK

GUIDE TO IMAGE SHARPENING

Unsharp masking[Wikipedia]

利用unsharp mask锐化图像



更多图像处理资源,请关注博客:LinJM-机器视觉微博:林建民-机器视觉

你可能感兴趣的:(图像处理)