Input Core和evdev基本知识 - Kernel3.0.8

 1. 基本数据结构和使用示例

input_event数据结构如下:

struct input_event {
	struct timeval time;
	__u16 type;
	__u16 code;
	__s32 value;
};

input_dev数据结构如下:

struct input_dev {
	const char *name;
	const char *phys;
	const char *uniq;
	struct input_id id;

	unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];

	unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
	unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
	unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
	unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];
	unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];
	unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
	unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
	unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
	unsigned long swbit[BITS_TO_LONGS(SW_CNT)];

	unsigned int hint_events_per_packet;

	unsigned int keycodemax;
	unsigned int keycodesize;
	void *keycode;

	int (*setkeycode)(struct input_dev *dev,
			  const struct input_keymap_entry *ke,
			  unsigned int *old_keycode);
	int (*getkeycode)(struct input_dev *dev,
			  struct input_keymap_entry *ke);

	struct ff_device *ff;

	unsigned int repeat_key;
	struct timer_list timer;

	int rep[REP_CNT];

	struct input_mt_slot *mt;
	int mtsize;
	int slot;
	int trkid;

	struct input_absinfo *absinfo;

	unsigned long key[BITS_TO_LONGS(KEY_CNT)];
	unsigned long led[BITS_TO_LONGS(LED_CNT)];
	unsigned long snd[BITS_TO_LONGS(SND_CNT)];
	unsigned long sw[BITS_TO_LONGS(SW_CNT)];

	int (*open)(struct input_dev *dev);
	void (*close)(struct input_dev *dev);
	int (*flush)(struct input_dev *dev, struct file *file);
	int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);

	struct input_handle __rcu *grab;

	spinlock_t event_lock;
	struct mutex mutex;

	unsigned int users;
	bool going_away;

	bool sync;

	struct device dev;

	struct list_head	h_list;
	struct list_head	node;
}


比如TouchScrenn报告一个TouchDown事件给Input子系统,其代码如下:

input_report_abs(inputdevice, ABS_X, 100);
input_report_abs(inputdevice, ABS_Y, 200);
input_report_key(inputdevice, BTN_TOUCH,  1);

static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value)
{
	input_event(dev, EV_ABS, code, value);
}

static inline void input_report_key(struct input_dev *dev, unsigned int code, int value)
{
	input_event(dev, EV_KEY, code, !!value);
}

/**
 * input_event() - report new input event
 * @dev: device that generated the event
 * @type: type of the event
 * @code: event code
 * @value: value of the event
 *
 * This function should be used by drivers implementing various input
 * devices to report input events. See also input_inject_event().
 */
void input_event(struct input_dev *dev,
		 unsigned int type, unsigned int code, int value)
{
	unsigned long flags;

	if (is_event_supported(type, dev->evbit, EV_MAX)) {

		spin_lock_irqsave(&dev->event_lock, flags);
		add_input_randomness(type, code, value);
		input_handle_event(dev, type, code, value);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
}

它将调用input_pass_event,input_pass_event代码如下:

static void input_pass_event(struct input_dev *dev,
			     unsigned int type, unsigned int code, int value)
{
	struct input_handler *handler;
	struct input_handle *handle;

	rcu_read_lock();

	handle = rcu_dereference(dev->grab);
	if (handle)
		handle->handler->event(handle, type, code, value);
	else {
		bool filtered = false;

		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
			if (!handle->open)
				continue;

			handler = handle->handler;
			if (!handler->filter) {
				if (filtered)
					break;

				handler->event(handle, type, code, value);

			} else if (handler->filter(handle, type, code, value))
				filtered = true;
		}
	}

	rcu_read_unlock();
}

上面的handler就是下面的evdev_handler.
2. evdev & input core & input_dev初始化

在kernel中,调用函数evdev_read,此函数从client->buffer中(evdev_client *client = file->private_data;)copy对应的input_event到用户提供的buffer。这些input_event数据如何从input_handle_event到client->buffer中的呢? 它是在evdev_event中实现的。

static struct input_handler evdev_handler = {
	.event		= evdev_event,
	.connect	= evdev_connect,
	.disconnect	= evdev_disconnect,
	.fops		= &evdev_fops,
	.minor		= EVDEV_MINOR_BASE,
	.name		= "evdev",
	.id_table	= evdev_ids,
};


    input_dev如何与evdev_handler关联起来的呢? 它只在evdev_init中调用input_register_handler(&evdev_handler)被注册了。其关联关系如下:   

   a)在input_register_handler中,把evdev_handler增加到input_handler_list中   

   b)在input_register_device中,通过input_attach_handler(dev, handler),寻找input_handler_list中哪一个input_handler与需要注册的设备相匹配,找到匹配的,则调用此input_handler的connect把input_handler与注册的input_device关联起来,这样新注册的input_device就有对应的处理方法了。

 

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
	const struct input_device_id *id;
	int error;

	id = input_match_device(handler, dev);
	if (!id)
		return -ENODEV;

	error = handler->connect(handler, dev, id);
	if (error && error != -ENODEV)
		pr_err("failed to attach handler %s to device %s, error: %d\n",
		       handler->name, kobject_name(&dev->dev.kobj), error);

	return error;
} 


     c)如果匹配上了,就调用evdev_handler->connect函数(evdev_connect),它把此evdev_handler保存在新设备的handle->handler中(evdev->handle.handler = handler;)。这样在input_pass_event就可以调用evdev->handle.handler.event了。        

    d)input_handle把input_device和input_handler关联起来,其数据结构如下: 

 

struct input_handle {

	void *private;

	int open;
	const char *name;

	struct input_dev *dev;
	struct input_handler *handler;

	struct list_head	d_node;
	struct list_head	h_node;
};

  e)evdev为事件字符设备( Event char devices)提供了访问原始输入设备事件的方法,即它是做具体事的东东,对于事件字符设备,当我们调用open, read, write最终都会调用它的函数,即evdev_fops中的对应函数。有了evdev和input core,设备驱动程序就很简单了.

   e.1)首先调用input_allocate_device 创建一个input_dev对象

   e.2)然后设备input_dev的各种属性以告诉input core你将提供哪些事件

   e.3)最后调用input_register_device把input_dev注册到input core

   f)input_register_device

       前面讲过,在input_register_device中,它将在input_handler_list 寻找与input_dev匹配的input_handler,然后调用input_handler的connect函数,即evdev_connect。在evdev_connect中,它将创建evdev对象,并以evdev->minor作为索引把它放在evdev_table数组中。evdev数据结构如下:

struct evdev {
	int open;
	int minor;   //在evdev_table中的索引
	struct input_handle handle;  //连接input_dev和input_handler
	wait_queue_head_t wait;
	struct evdev_client __rcu *grab;   // 用户每调用一次open,将创建一个evdev_client
	struct list_head client_list;
	spinlock_t client_lock; /* protects client_list */
	struct mutex mutex;
	struct device dev;
	bool exist;
};

struct evdev_client {
	unsigned int head;
	unsigned int tail;
	unsigned int packet_head; /* [future] position of the first element of next packet */
	spinlock_t buffer_lock; /* protects access to buffer, head and tail */
	struct wake_lock wake_lock;
	char name[28];
	struct fasync_struct *fasync;
	struct evdev *evdev;
	struct list_head node;
	unsigned int bufsize;
	struct input_event buffer[];  //存放所有这个设备产生的input_event,由evdev_event写入
};

        在evdev_connect,它设置设备名,初始化input_handle中各个数据成员(关键是其input_dev和input_handler),然后再调用input_register_handle把evdev中的input_handle添加到input_dev的h_lis链表中,并且把此input_handle添加到input_handler的h_list链表中。从此它们的三角关系建立完成。注:当用户每打开一次它就要创建一个evdev_client,并加入到client_list链表中,当input_dev产生事件时,evdev_event函数将把此input_event放入evdev->client_list链表中的每个evdev_client的buffer中。它们的关系如下图所示:

Input Core和evdev基本知识 - Kernel3.0.8_第1张图片

3. Kernel中数据读取流程

     在kernel中调用evdev_read来读取数据,其函数原型如下:

static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)

    其读取流程为:

    1)从前面得知在打开设备文件时,创建了一个evdev_client,并把此client保存在file的private_data中,所以现在从file->private_data中取出evdev_client

    2)从前面得知此evdev_client中保存有在evdev_connect时创建的evdev,从而可以得到对应的evdev对象

    3)从client->buffer中读取事件,并copy到用户提供的buffer中。前面讲过,client->buffer中的事件是当input_dev报告事件给Input core时,由evdev_event把input_event事件放入client->buffer中的。

   

你可能感兴趣的:(数据结构,struct,list,report,buffer,input)