input_event数据结构如下:
struct input_event { struct timeval time; __u16 type; __u16 code; __s32 value; };
input_dev数据结构如下:
struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt_slot *mt; int mtsize; int slot; int trkid; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; bool sync; struct device dev; struct list_head h_list; struct list_head node; }
比如TouchScrenn报告一个TouchDown事件给Input子系统,其代码如下:
input_report_abs(inputdevice, ABS_X, 100); input_report_abs(inputdevice, ABS_Y, 200); input_report_key(inputdevice, BTN_TOUCH, 1); static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_ABS, code, value); } static inline void input_report_key(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_KEY, code, !!value); } /** * input_event() - report new input event * @dev: device that generated the event * @type: type of the event * @code: event code * @value: value of the event * * This function should be used by drivers implementing various input * devices to report input events. See also input_inject_event(). */ void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { unsigned long flags; if (is_event_supported(type, dev->evbit, EV_MAX)) { spin_lock_irqsave(&dev->event_lock, flags); add_input_randomness(type, code, value); input_handle_event(dev, type, code, value); spin_unlock_irqrestore(&dev->event_lock, flags); } }
它将调用input_pass_event,input_pass_event代码如下:
static void input_pass_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { struct input_handler *handler; struct input_handle *handle; rcu_read_lock(); handle = rcu_dereference(dev->grab); if (handle) handle->handler->event(handle, type, code, value); else { bool filtered = false; list_for_each_entry_rcu(handle, &dev->h_list, d_node) { if (!handle->open) continue; handler = handle->handler; if (!handler->filter) { if (filtered) break; handler->event(handle, type, code, value); } else if (handler->filter(handle, type, code, value)) filtered = true; } } rcu_read_unlock(); }
在kernel中,调用函数evdev_read,此函数从client->buffer中(evdev_client *client = file->private_data;)copy对应的input_event到用户提供的buffer。这些input_event数据如何从input_handle_event到client->buffer中的呢? 它是在evdev_event中实现的。
static struct input_handler evdev_handler = {
.event = evdev_event,
.connect = evdev_connect,
.disconnect = evdev_disconnect,
.fops = &evdev_fops,
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids,
};
input_dev如何与evdev_handler关联起来的呢? 它只在evdev_init中调用input_register_handler(&evdev_handler)被注册了。其关联关系如下:
a)在input_register_handler中,把evdev_handler增加到input_handler_list中
b)在input_register_device中,通过input_attach_handler(dev, handler),寻找input_handler_list中哪一个input_handler与需要注册的设备相匹配,找到匹配的,则调用此input_handler的connect把input_handler与注册的input_device关联起来,这样新注册的input_device就有对应的处理方法了。
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
id = input_match_device(handler, dev);
if (!id)
return -ENODEV;
error = handler->connect(handler, dev, id);
if (error && error != -ENODEV)
pr_err("failed to attach handler %s to device %s, error: %d\n",
handler->name, kobject_name(&dev->dev.kobj), error);
return error;
}
c)如果匹配上了,就调用evdev_handler->connect函数(evdev_connect),它把此evdev_handler保存在新设备的handle->handler中(evdev->handle.handler = handler;)。这样在input_pass_event就可以调用evdev->handle.handler.event了。
d)input_handle把input_device和input_handler关联起来,其数据结构如下:
struct input_handle { void *private; int open; const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node; struct list_head h_node; };
e)evdev为事件字符设备( Event char devices)提供了访问原始输入设备事件的方法,即它是做具体事的东东,对于事件字符设备,当我们调用open, read, write最终都会调用它的函数,即evdev_fops中的对应函数。有了evdev和input core,设备驱动程序就很简单了.
e.1)首先调用input_allocate_device 创建一个input_dev对象
e.2)然后设备input_dev的各种属性以告诉input core你将提供哪些事件
e.3)最后调用input_register_device把input_dev注册到input core
f)input_register_device
前面讲过,在input_register_device中,它将在input_handler_list 寻找与input_dev匹配的input_handler,然后调用input_handler的connect函数,即evdev_connect。在evdev_connect中,它将创建evdev对象,并以evdev->minor作为索引把它放在evdev_table数组中。evdev数据结构如下:
struct evdev { int open; int minor; //在evdev_table中的索引 struct input_handle handle; //连接input_dev和input_handler wait_queue_head_t wait; struct evdev_client __rcu *grab; // 用户每调用一次open,将创建一个evdev_client struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; bool exist; }; struct evdev_client { unsigned int head; unsigned int tail; unsigned int packet_head; /* [future] position of the first element of next packet */ spinlock_t buffer_lock; /* protects access to buffer, head and tail */ struct wake_lock wake_lock; char name[28]; struct fasync_struct *fasync; struct evdev *evdev; struct list_head node; unsigned int bufsize; struct input_event buffer[]; //存放所有这个设备产生的input_event,由evdev_event写入 };
在evdev_connect,它设置设备名,初始化input_handle中各个数据成员(关键是其input_dev和input_handler),然后再调用input_register_handle把evdev中的input_handle添加到input_dev的h_lis链表中,并且把此input_handle添加到input_handler的h_list链表中。从此它们的三角关系建立完成。注:当用户每打开一次它就要创建一个evdev_client,并加入到client_list链表中,当input_dev产生事件时,evdev_event函数将把此input_event放入evdev->client_list链表中的每个evdev_client的buffer中。它们的关系如下图所示:
在kernel中调用evdev_read来读取数据,其函数原型如下:
static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
其读取流程为:
1)从前面得知在打开设备文件时,创建了一个evdev_client,并把此client保存在file的private_data中,所以现在从file->private_data中取出evdev_client
2)从前面得知此evdev_client中保存有在evdev_connect时创建的evdev,从而可以得到对应的evdev对象
3)从client->buffer中读取事件,并copy到用户提供的buffer中。前面讲过,client->buffer中的事件是当input_dev报告事件给Input core时,由evdev_event把input_event事件放入client->buffer中的。