数据仓库技术简介1(上)

数据仓库是近年来兴起的一种新的数据库应用。在各大数据库厂商纷纷宣布产品支持数据仓库并提出一整套用以建立和使用数据仓库的产品是,业界掀起了数据库热。比如INFORMIXGONGSIDE公司的数据仓库解决方案;ORACLE公司的数据仓库解决方案;Sybase公司的交互式数据仓库解决方案等等。这同时也引起了学术界的极大兴趣,国际上许多重要的学术会议,如超大型数据库国际会议(VLDB),数据工程国际会议(Data Engineering)等,都出现了专门研究数据仓库(Data Warehousing,简记为DW)、联机分析处理(On-Line Analytical Processing,简记为OLAP)、数据挖掘(Data Mining, 简记为DM)的论文。对我国许多企业而言,在建立或发展自己的信息系统常常困扰于这样的问题:为什么要在原有的数据库上建立数据仓库?数据仓库能否代替传统的数据库?怎样建立数据仓库?等等。本章将简要介绍一下用到的数据仓库技术背景,并在下一章结合数据清理系统设计实例,更深一步阐述数据仓库技术在现实中的重大意义。

一、从数据库到数据仓库

传统的数据库技术是以单一的数据资源,即数据库为中心,进行事务处理、批处理、决策分析等各种数据处理工作,主要的划分为两大类:操作型处理和分析型处理(或信息型处理)。 操作型处理也叫事务处理,是指对数据库联机的日常操作,通常是对一个或一组纪录的查询和修改,主要为企业的特定应用服务的,注重响应时间,数据的安全性和完整性;分析型处理则用于管理人员的决策分析,经常要访问大量的历史数据。而传统数据库系统优于企业的日常事务处理工作,而难于实现对数据分析处理要求,已经无法满足数据处理多样化的要求。操作型处理和分析型处理的分离成为必然。

近年来,随着数据库技术的应用和发展,人们尝试对DB中的数据进行再加工,形成一个综合的,面向分析的环境,以更好支持决策分析,从而形成了数据仓库技术(Data Warehousing,简称DW)。作为决策支持系统(Decision-making Support System,简称DSS),数据仓库系统包括:

① 数据仓库技术;
② 联机分析处理技术(On-Line Analytical Processing,简称OLAP);
③ 数据挖掘技术(Data Mining,简称DM);
数据仓库弥补了原有的数据库的缺点,将原来的以单一数据库为中心的数据环境发展为一种新环境:体系化环境。如图1.1所示:


你可能感兴趣的:(oracle,工作,数据挖掘,企业应用,Sybase)