字符串 |
l 对于常量字符串,用'String' 代替 'StringBuffer' 常量字符串并不需要动态改变长度。 例子: public class USC { String method () { StringBuffer s = new StringBuffer ("Hello"); String t = s + "World!"; return t; } }
更正: 把StringBuffer换成String,如果确定这个String不会再变的话,这将会减少运行开销提高性能。 l 如果只是查找单个字符的话,用charAt()代替startsWith() 例子: public class PCTS { private void method(String s) { if (s.startsWith("a")) { // violation // ... } } }
更正 将'startsWith()' 替换成'charAt()'. public class PCTS { private void method(String s) { if ('a' == s.charAt(0)) { // ... } } } 参考资料: Dov Bulka, "Java Performance and Scalability Volume 1: Server-Side Programming Techniques" Addison Wesley, ISBN: 0-201-70429-3 l 在字符串相加的时候,使用 ' ' 代替 " ",如果该字符串只有一个字符的话 例子: public class STR { public void method(String s) { String string = s + "d" // violation. string = "abc" + "d" // violation. } } 更正: 将一个字符的字符串替换成' ' public class STR { public void method(String s) { String string = s + 'd' string = "abc" + 'd' } } l 用'StringTokenizer' 代替 'indexOf()' 和'substring()' 字符串的分析在很多应用中都是常见的。使用indexOf()和substring()来分析字符串容易导致StringIndexOutOfBoundsException。而使用StringTokenizer类来分析字符串则会容易一些,效率也会高一些。
例子: public class UST { void parseString(String string) { int index = 0; while ((index = string.indexOf(".", index)) != -1) { System.out.println (string.substring(index, string.length())); } } }
参考资料: Graig Larman, Rhett Guthrie: "Java 2 Performance and Idiom Guide" Prentice Hall PTR, ISBN: 0-13-014260-3 pp. 282 – 283 l 确定 StringBuffer的容量 StringBuffer的构造器会创建一个默认大小(通常是16)的字符数组。在使用中,如果超出这个大小,就会重新分配内存,创建一个更大的数组,并将原先的数组复制过来,再丢弃旧的数组。在大多数情况下,你可以在创建StringBuffer的时候指定大小,这样就避免了在容量不够的时候自动增长,以提高性能。
例子: public class RSBC { void method () { StringBuffer buffer = new StringBuffer(); // violation buffer.append ("hello"); } }
更正: 为StringBuffer提供寝大小。 public class RSBC { void method () { StringBuffer buffer = new StringBuffer(MAX); buffer.append ("hello"); } private final int MAX = 100; }
参考资料: Dov Bulka, "Java Performance and Scalability Volume 1: Server-Side Programming Techniques" Addison Wesley, ISBN: 0-201-70429-3 p.30 – 31
|
数据结构 |
l 为'Vectors' 和 'Hashtables'定义初始大小 JVM为Vector扩充大小的时候需要重新创建一个更大的数组,将原原先数组中的内容复制过来,最后,原先的数组再被回收。可见Vector容量的扩大是一个颇费时间的事。 通常,默认的10个元素大小是不够的。你最好能准确的估计你所需要的最佳大小。 例子: import java.util.Vector; public class DIC { public void addObjects (Object[] o) { // if length > 10, Vector needs to expand for (int i = 0; i< o.length;i++) { v.add(o); // capacity before it can add more elements. } } public Vector v = new Vector(); // no initialCapacity. } 更正: 自己设定初始大小。 public Vector v = new Vector(20); public Hashtable hash = new Hashtable(10);
参考资料: Dov Bulka, "Java Performance and Scalability Volume 1: Server-Side Programming Techniques" Addison Wesley, ISBN: 0-201-70429-3 pp.55 – 57 l 使用'System.arraycopy ()'代替通过来循环复制数组 'System.arraycopy ()' 要比通过循环来复制数组快的多。
例子: public class IRB { void method () { int[] array1 = new int [100]; for (int i = 0; i < array1.length; i++) { array1 [i] = i; } int[] array2 = new int [100]; for (int i = 0; i < array2.length; i++) { array2 [i] = array1 [i]; // Violation } } }
更正: public class IRB { void method () { int[] array1 = new int [100]; for (int i = 0; i < array1.length; i++) { array1 [i] = i; } int[] array2 = new int [100]; System.arraycopy(array1, 0, array2, 0, 100); } }
参考资料: http://www.cs.cmu.edu/~jch/java/speed.html l 尽可能的使用栈变量 如果一个变量需要经常访问,那么你就需要考虑这个变量的作用域了。static? local?还是实例变量?访问静态变量和实例变量将会比访问局部变量多耗费2-3个时钟周期。
例子: public class USV { void getSum (int[] values) { for (int i=0; i < value.length; i++) { _sum += value[i]; // violation. } } void getSum2 (int[] values) { for (int i=0; i < value.length; i++) { _staticSum += value[i]; } } private int _sum; private static int _staticSum; }
更正: 如果可能,请使用局部变量作为你经常访问的变量。 你可以按下面的方法来修改getSum()方法: void getSum (int[] values) { int sum = _sum; // temporary local variable. for (int i=0; i < value.length; i++) { sum += value[i]; } _sum = sum; }
参考资料: Peter Haggar: "Practical Java - Programming Language Guide". Addison Wesley, 2000, pp.122 – 125
|
算术运算 |
l 使用移位操作来代替'a / b'操作 "/"是一个很“昂贵”的操作,使用移位操作将会更快更有效。
例子: public class SDIV { public static final int NUM = 16; public void calculate(int a) { int div = a / 4; // should be replaced with "a >> 2". int div2 = a / 8; // should be replaced with "a >> 3". int temp = a / 3; } }
更正: public class SDIV { public static final int NUM = 16; public void calculate(int a) { int div = a >> 2; int div2 = a >> 3; int temp = a / 3; // 不能转换成位移操作 } } l 使用移位操作代替'a * b' 同上。 [i]但我个人认为,除非是在一个非常大的循环内,性能非常重要,而且你很清楚你自己在做什么,方可使用这种方法。否则提高性能所带来的程序晚读性的降低将是不合算的。
例子: public class SMUL { public void calculate(int a) { int mul = a * 4; // should be replaced with "a << 2". int mul2 = 8 * a; // should be replaced with "a << 3". int temp = a * 3; } }
更正: package OPT; public class SMUL { public void calculate(int a) { int mul = a << 2; int mul2 = a << 3; int temp = a * 3; // 不能转换 } } l 对于boolean值,避免不必要的等式判断
将一个boolean值与一个true比较是一个恒等操作(直接返回该boolean变量的值). 移走对于boolean的不必要操作至少会带来2个好处: 1)代码执行的更快 (生成的字节码少了5个字节); 2)代码也会更加干净 。
例子: public class UEQ { boolean method (String string) { return string.endsWith ("a") == true; // Violation } }
更正: class UEQ_fixed { boolean method (String string) { return string.endsWith ("a"); } } l 不要总是使用取反操作符(!) 取反操作符(!)降低程序的可读性,所以不要总是使用。
例子: public class DUN { boolean method (boolean a, boolean b) { if (!a) return !a; else return !b; } }
更正: 如果可能不要使用取反操作符(!)
|
流程控制 |
l 避免在循环条件中使用复杂表达式 在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。 例子: import java.util.Vector; class CEL { void method (Vector vector) { for (int i = 0; i < vector.size (); i++) // Violation ; // ... } } 更正: class CEL_fixed { void method (Vector vector) { int size = vector.size () for (int i = 0; i < size; i++) ; // ... } } l 不要在循环中调用synchronized(同步)方法 方法的同步需要消耗相当大的资料,在一个循环中调用它绝对不是一个好主意。
例子: import java.util.Vector; public class SYN { public synchronized void method (Object o) { } private void test () { for (int i = 0; i < vector.size(); i++) { method (vector.elementAt(i)); // violation } } private Vector vector = new Vector (5, 5); }
更正: 不要在循环体中调用同步方法,如果必须同步的话,推荐以下方式: import java.util.Vector; public class SYN { public void method (Object o) { } private void test () { synchronized{//在一个同步块中执行非同步方法 for (int i = 0; i < vector.size(); i++) { method (vector.elementAt(i)); } } } private Vector vector = new Vector (5, 5); } l 使用条件操作符替代"if (cond) return; else return;" 结构 条件操作符更加的简捷 例子: public class IF { public int method(boolean isDone) { if (isDone) { return 0; } else { return 10; } } }
更正: public class IF { public int method(boolean isDone) { return (isDone ? 0 : 10); } } l 不要在循环体中实例化变量 在循环体中实例化临时变量将会增加内存消耗
例子: import java.util.Vector; public class LOOP { void method (Vector v) { for (int i=0;i < v.size();i++) { Object o = new Object(); o = v.elementAt(i); } } }
更正: 在循环体外定义变量,并反复使用 import java.util.Vector; public class LOOP { void method (Vector v) { Object o; for (int i=0;i<v.size();i++) { o = v.elementAt(i); } } }
|
异常处理 |
l 在finally块中关闭Stream 程序中使用到的资源应当被释放,以避免资源泄漏。这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。
例子: import java.io.*; public class CS { public static void main (String args[]) { CS cs = new CS (); cs.method (); } public void method () { try { FileInputStream fis = new FileInputStream ("CS.java"); int count = 0; while (fis.read () != -1) count++; System.out.println (count); fis.close (); } catch (FileNotFoundException e1) { } catch (IOException e2) { } } } 更正: 在最后一个catch后添加一个finally块
参考资料: Peter Haggar: "Practical Java - Programming Language Guide". Addison Wesley, 2000, pp.77-79 l 将try/catch块移出循环 把try/catch块放入循环体内,会极大的影响性能,如果编译JIT被关闭或者你所使用的是一个不带JIT的JVM,性能会将下降21%之多! 例子: import java.io.FileInputStream; public class TRY { void method (FileInputStream fis) { for (int i = 0; i < size; i++) { try { // violation _sum += fis.read(); } catch (Exception e) {} } } private int _sum; } 更正: 将try/catch块移出循环 void method (FileInputStream fis) { try { for (int i = 0; i < size; i++) { _sum += fis.read(); } } catch (Exception e) {} } 参考资料: Peter Haggar: "Practical Java - Programming Language Guide". Addison Wesley, 2000, pp.81 – 83
|
类与对象 |
l 让访问实例内变量的getter/setter方法变成”final” 简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined” 例子: class MAF { public void setSize (int size) { _size = size; } private int _size; }
更正: class DAF_fixed { final public void setSize (int size) { _size = size; } private int _size; }
参考资料: Warren N. and Bishop P. (1999), "Java in Practice", p. 4-5 Addison-Wesley, ISBN 0-201-36065-9 l 避免不需要的instanceof操作 如果左边的对象的静态类型等于右边的,instanceof表达式返回永远为true。
例子: public class UISO { public UISO () {} } class Dog extends UISO { void method (Dog dog, UISO u) { Dog d = dog; if (d instanceof UISO) // always true. System.out.println("Dog is a UISO"); UISO uiso = u; if (uiso instanceof Object) // always true. System.out.println("uiso is an Object"); } }
更正: 删掉不需要的instanceof操作。
class Dog extends UISO { void method () { Dog d; System.out.println ("Dog is an UISO"); System.out.println ("UISO is an UISO"); } }
l 避免不需要的造型操作 所有的类都是直接或者间接继承自Object。同样,所有的子类也都隐含的“等于”其父类。那么,由子类造型至父类的操作就是不必要的了。 例子: class UNC { String _id = "UNC"; } class Dog extends UNC { void method () { Dog dog = new Dog (); UNC animal = (UNC)dog; // not necessary. Object o = (Object)dog; // not necessary. } }
更正: class Dog extends UNC { void method () { Dog dog = new Dog(); UNC animal = dog; Object o = dog; } }
参考资料: Nigel Warren, Philip Bishop: "Java in Practice - Design Styles and Idioms for Effective Java". Addison-Wesley, 1999. pp.22-23
l 与一个接口 进行instanceof操作 基于接口的设计通常是件好事,因为它允许有不同的实现,而又保持灵活。只要可能,对一个对象进行instanceof操作,以判断它是否某一接口要比是否某一个类要快。
例子: public class INSOF { private void method (Object o) { if (o instanceof InterfaceBase) { } // better if (o instanceof ClassBase) { } // worse. } }
class ClassBase {} interface InterfaceBase {}
|