机器人路径规划_遗传算法

机器人路径规划_遗传算法

原理

遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

遗传算法的基本运算过程如下:

a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

b)个体评价:计算群体P(t)中各个个体的适应度

遗传算法

c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。

群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

 

4.2优点

遗传算法有比较强的全局搜索能力,特别是当交叉概率比较大时,能产生大量的新个体,提高了全局搜索范围,遗传算法适合求解离散问题,具备数学理论支持。遗传算法是一种基于自然选择和自然遗传的全局优化算法。

4.3缺点

是随机算法,存在汉明悬崖等问题。传统的遗传算法在求解移动机器人路径规划问题,存在早熟收敛问题,且路径规划的效果不稳定。


你可能感兴趣的:(机器学习)