车牌识别技术详解四--二值化找轮廓做分割得样本(车牌分割,验证码分割)

这一节,主要讲通过灰度化,自适应二值化,ROI找轮廓,轮廓筛选,ROI轮廓分割,自动割取样本;

如图:在车牌分割中应用比较广,大致思路可以看我的程序,具体细节可以针对不同的检测物体的大小以及背景更改。

车牌识别技术详解四--二值化找轮廓做分割得样本(车牌分割,验证码分割)_第1张图片

#include <cv.h>
#include <highgui.h>
#include <cvaux.h>

using namespace std;
using namespace cv;

#define showSteps false
#define saveModel false

//定义文件夹下视频的数量
#define NumVideo 16

string getFilename(string s) {

	char sep = '/';
	char sepExt='.';

#ifdef _WIN32
	sep = '\\';
#endif

	size_t i = s.rfind(sep, s.length( ));
	if (i != string::npos) {
		string fn= (s.substr(i+1, s.length( ) - i));
		size_t j = fn.rfind(sepExt, fn.length( ));
		if (i != string::npos) {
			return fn.substr(0,j);
		}else{
			return fn;
		}
	}else{
		return "";
	}
}

void adaptiveThreshold(Mat input, Mat bin, int width, int height);

bool verifySizes(RotatedRect mr){

	float error=0.6;
	//Spain car plate size: 20*40 aspect 360
	float aspect=0.5;
	//Set a min and max area. All other patchs are discarded
	int min= 20*aspect*20; // minimum area 200
	int max= 50*aspect*50; // maximum area 1250
	//Get only patchs that match to a respect ratio.
	float rmin= aspect-aspect*error; //0.5-0.5*0.6 = 0.2
	float rmax= aspect+aspect*error; //0.8

	int area= mr.size.height * mr.size.width;
	float r= (float)mr.size.width / (float)mr.size.height;

	
	/*if(r<1)
	r= (float)mr.size.height / (float)mr.size.width;*/

	if(( area < min || area > max ) || ( r < rmin || r > rmax ) || (mr.size.height>=47 || mr.size.height<=26)||(mr.size.width<=9 || mr.size.width>=31)){
//	if( (mr.size.height>=45 || mr.size.height<=24)||(mr.size.width<=6 || mr.size.width>=27) ){
		return false;
	}else{
		return true;
	}
}

int main ( int argc, char** argv )
{
	//初始化一个视频文件捕捉器
	char *video_name = NULL;
	CvCapture* capture;
	video_name = (char*)malloc(500*sizeof(char)); //动态分配内存

	char *filename = NULL;
	filename=(char *)malloc(50*sizeof(char)); //动态分配内存

	for(int jj=1; jj<=NumVideo; jj++)
	{
		int i=0; //视频读取标志标志
		printf("\n第%d段视频\n",jj);

		sprintf_s(video_name, 500, "E:\\video\\%d.avi",jj);//保存的图片名
//		sprintf_s(video_name, 500, "I:\\ship\\%d.avi",jj);//保存的图片名
		capture = cvCaptureFromAVI(video_name);
		//	CvCapture* capture = cvCaptureFromAVI("..\\video\\4.avi");
		if( capture == NULL ){
			printf("视频文件打开失败!!");
			continue;
		}

		int frameH    = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);
		int frameW    = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
		int fps       = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
		int numFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_COUNT);
		printf("\tvideo height : %d\n\tvideo width : %d\n\tfps : %d\n\tframe numbers : %d\n", frameH, frameW, fps, numFrames);

		//定义和初始化变量
		Mat input_image;
		input_image = cvQueryFrame(capture); //获取一帧图片
		namedWindow("Source Image",1);

		char * image_name=NULL;
		//char image_name[20];
		image_name=(char *)malloc(50*sizeof(char)); //动态分配内存

	//	for(int i=0;i<202;i++)
			input_image = cvQueryFrame(capture); //获取一帧图片
		
		int c = 0;
		int imageNum = 0;
		while(1)
		{
			imageNum++;
			//获取空格键值,并置位抠图标志位flag
			
		//	c = cvWaitKey(0);
		//	if((char)c==(char)32)
			{
			//	printf("%d\n",imageNum);
				input_image = cvQueryFrame(capture); //获取一帧图片
				if( capture == NULL )
				{
					printf("视频文件打开失败!!");
					continue;
				}					

				if(! input_image.data ) // Check for invalid input
				{
					cout << "Could not open or find the image" << std::endl ;
					return -1;
				}

			//	string filename_whithoutExt=getFilename(filename);
				cout <<"\n"<<"working with file: "<< imageNum << "\n";
		
				Mat img;
				img = input_image.clone();

				/*	char *imgName = NULL;
				imgName = (char *)malloc(100*sizeof(char));
				sprintf(imgName,"%s%d%s%d%s","..\\image\\",jj,"_",imageNum,".bmp");
				imwrite(imgName,img);*/

				Mat img_gray;
				cvtColor(input_image, img_gray, CV_BGR2GRAY);
				medianBlur(img_gray,img_gray,3);
				if(showSteps){
					namedWindow("img_gray",1);
					imshow("img_gray",img_gray);
				}

				/*Mat img_normalize = img_gray.clone();
				normalize(img_normalize,img_normalize,255,0,CV_MINMAX,-1);
				imshow("normalize",img_normalize);*/

				Mat img_equal = img_gray.clone();
				equalizeHist(img_equal,img_equal);
		//		imwrite("img_equal.jpg",img_equal);
				if(showSteps){
					namedWindow("img_equal",1);
					imshow("img_equal",img_equal);
				}
				

				////定义折线变换的坐标
				//const CvPoint p1 = cvPoint(127, 8);
				//const CvPoint p2 = cvPoint(158, 250);

				//Mat img_gray_enhance = img_gray.clone();

				//for (int j=0;j<img_gray.rows;j++){
				//	uchar* pData = img_gray.ptr<uchar>(j);
				//	uchar* pDataEnhance = img_gray_enhance.ptr<uchar>(j);
				//	for(int i=0;i<img_gray.cols*img_gray.channels();i++){
				//		if(pData[i]<=p1.x)
				//			pDataEnhance[i]=(int)(p1.y);
				//		else if(pData[i]>=p2.x)
				//			pDataEnhance[i]=(int)(p2.y);
				//		//	pDataEnhance[i]=p1.y;
				//		else
				//			pDataEnhance[i]=(int)((p2.y-p1.y)/(p2.x-p1.x)*pData[i])+p1.y;
				//			

				//	/*	if(pDataEnhance[i]>255)
				//			pDataEnhance[i]=255;
				//		if(pDataEnhance[i]<=0)
				//			pDataEnhance[i]=1;*/
				//	}
				//}
				////	medianBlur(img_gray_enhance, img_gray_enhance, 3);  
				//if(showSteps)
				//	imshow("enhance",img_gray_enhance);
	
			//	blur(img_gray,img_gray,cvSize(4,4),Point(-1,-1),4);
				//if(showSteps){
				//	namedWindow("gray Image",1);
				//	imshow("gray Image",img_gray);
				//	/*Mat img;
				//	cvtColor(img_gray,img,CV_GRAY2BGR);
				//	imwrite("test1.bmp",img);*/
				//}
				//	blur(img_gray, img_gray, Size(5,5));

				Mat img_grayTemp;
				img_equal.copyTo(img_grayTemp);

				Mat img_binary;
				img_equal.copyTo(img_binary);
				int blockSize = 19;
				int constValue = 9;
				Mat img_threshold;
			//	adaptiveThresholdSelf(img_gray, img_threshold,img_gray.cols,img_gray.rows);
			//	threshold(img_grayTemp,img_binary,0,255,CV_THRESH_OTSU+CV_THRESH_BINARY_INV);
				adaptiveThreshold(img_grayTemp, img_binary, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue);
				medianBlur(img_binary,img_binary,5);
		//		blur(img_binary,img_binary,cvSize(5,5),Point(-1,-1),4);
		//		medianBlur(img_binary,img_binary,7);
				if(showSteps){
					namedWindow("img_binary",1);
					imshow("img_binary",img_binary);
				}


				//Find contours of possibles plates
				vector< vector< Point> > contours;
				findContours(img_binary,
					contours, // a vector of contours
					CV_RETR_EXTERNAL, // retrieve the external contours
					CV_CHAIN_APPROX_NONE); // all pixels of each contours

				if(showSteps)
					cout << "the number of contour is :" <<contours.size() <<"\n";

		//		drawContours(input_image,contours,-1,cv::Scalar(255,0,0), 1); 

				vector<Rect> boundRect1( contours.size() );
				char *image_name = NULL;
				image_name = (char *)malloc(50*sizeof(char));
				//for( int i = 0; i < contours.size(); i++ ){	
				//	//	approxPolyDP( Mat(contours[i]), contours_poly[i], 6, true );
				//	boundRect1[i] = boundingRect( Mat(contours[i]) );//获取区域的边界对焦点坐标
		
				//	cout<<boundRect1[i].tl()<<","<<boundRect1[i].br()<<endl;

				//	Rect box;
				//	
				//	//在指定的窗口内进行处理
				//	box.x = boundRect1[i].tl().x;
				//	box.y = boundRect1[i].tl().y;
				//	box.width = boundRect1[i].br().x - boundRect1[i].tl().x;
				//	box.height = boundRect1[i].br().y - boundRect1[i].tl().y;

				//	//扣取指定区域,在指定区域内处理图像
				//	Mat imageROI(input_image, box);
				//	sprintf(image_name, "%s%d%s%d%s", "..\\temp\\", imageNum,"_",i, ".bmp");


				//	imwrite(image_name,imageROI);

				//}

				//Start to iterate to each contour founded
				vector<vector<Point> >::iterator itc= contours.begin();
				vector<RotatedRect> rects;
				//Remove patch that are no inside limits of aspect ratio and area.  
				while (itc!=contours.end()) {
					//Create bounding rect of object
					RotatedRect mr= minAreaRect(Mat(*itc));
		//			cout<<"区域高:"<<mr.size.height<<"区域低:"<<mr.size.width<<endl;
					if( !verifySizes(mr)){
						itc= contours.erase(itc);			
					}else{
						++itc;
						rects.push_back(mr);	
			//	cout<<"-----------区域高:"<<mr.size.height<<"区域低:"<<mr.size.width<<endl;
					}
				}
				if(showSteps)
					cout << "目标个数是:" <<contours.size() <<"\n";

				/// Approximate contours to polygons + get bounding rects and circles
				vector<vector<Point> > contours_poly( contours.size() );
				vector<Rect> boundRect( contours.size() );
			
			//	vector<Point2f>center( contours.size() );
			//	vector<float>radius( contours.size() );

				for( int i = 0; i < contours.size(); i++ ){	
				//	approxPolyDP( Mat(contours[i]), contours_poly[i], 6, true );
					boundRect[i] = boundingRect( Mat(contours[i]) );//获取区域的边界对焦点坐标
			//		int br_y = boundRect[i].br().y+33;
					int br_y = boundRect[i].br().y;
					if(br_y>=199)
						br_y = 198;
					rectangle( input_image, Point(boundRect[i].tl().x,boundRect[i].tl().y), Point(boundRect[i].br().x,br_y), cv::Scalar(0,0,255), 2, 8, 0 );
					cout<<boundRect[i].tl()<<","<<boundRect[i].br()<<"["<<boundRect[i].br().x - boundRect[i].tl().x<<","<<boundRect[i].br().y - boundRect[i].tl().y<<"]"<<endl;

					Rect box;

					//在指定的窗口内进行处理
					box.x = boundRect[i].tl().x;
					box.y = boundRect[i].tl().y;
					box.width = boundRect[i].br().x - boundRect[i].tl().x;
					box.height = br_y - boundRect[i].tl().y;

					//扣取指定区域,在指定区域内处理图像
					Mat imageROI(img,box);


			//		//版本一:通过10*40 resize,然后自适应二值化,滤波作为模板:
			//		Mat imageROIResize;
			//		resize(imageROI,imageROIResize,cvSize(10,40));
			////		imshow("imageROIResize",imageROIResize);			
			//		Mat tempBinary;
			//		int blockSize = 19;
			//		int constValue = 3;
			//		adaptiveThreshold(imageROIResize, tempBinary, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue);
			//		medianBlur(tempBinary,tempBinary,3);				
			////		imshow("tempBinary",tempBinary);
			//		sprintf(image_name, "%s%d%s%d%s%d%s", "..\\tempBinary\\",jj,"_", imageNum,"_",i, ".bmp");
			//		imwrite(image_name,tempBinary);


					//版本二:通过10*40 resize,然后自适应二值化,滤波作为模板:
					Mat imageROIResize;
					resize(imageROI,imageROIResize,cvSize(22,35));
			//		imshow("imageROIResize",imageROIResize);
			//		equalizeHist(imageROIResize,imageROIResize);
			//		imshow("tempBinary",tempBinary);
					sprintf(image_name, "%s%d%s%d%s%d%s", "..\\tempGray\\",jj,"_", imageNum,"_",i, ".bmp");
					imwrite(image_name,imageROIResize);
			//		cvWaitKey(0);

				}

		//		drawContours(input_image,contours,-1,cv::Scalar(255,0,0), 1); 

		


				//Rect box;
				////在指定的窗口内进行处理
				//box.x = boundRect[i].tl().x;
				//box.y = boundRect[i].tl().y;
				//box.width = boundRect[i].br().x - boundRect[i].tl().x;
				//box.height = boundRect[i].br().y - boundRect[i].tl().y + 40;
				

				//adaptiveThreshold(img_grayTemp, img_binary,img_grayTemp.rows, img_grayTemp.cols);


				//	const int nChannels = img_grayTemp.channels();

				//	unsigned char *input;
				//	input = (unsigned char*)malloc(img_grayTemp.rows*img_grayTemp.cols*sizeof(unsigned char*));

				//	unsigned char* bin;
				//	bin = (unsigned char*)malloc(img_grayTemp.rows*img_grayTemp.cols*sizeof(unsigned char*));
				//	int index = 0;
				////	int totalNum = 0;
				////	int sum = 0;
				//	for(int j = 0 ; j < img_grayTemp.rows; ++j)
				//	{			
				//		uchar* current = img_grayTemp.ptr<uchar>(j );		
				//	//	uchar* maskOutput = mask.ptr<uchar>(j);
				//		for(int i= 0;i < nChannels*(img_grayTemp.cols); ++i)
				//		{
				//			index = j*img_grayTemp.rows+i;				
				//			input[index] = current[i];				
				//		}
				//	}

				//	adaptiveThreshold(input,bin, img_grayTemp.rows, img_grayTemp.cols);
				//	


				//	Mat img_binary;
				//	img_gray.copyTo(img_binary);
				//	for(int j = 0 ; j < img_grayTemp.rows; ++j)
				//	{			
				//		uchar* currentBin = img_binary.ptr<uchar>(j );		
				//		//	uchar* maskOutput = mask.ptr<uchar>(j);
				//		for(int i= 0;i < nChannels*(img_grayTemp.cols); ++i)
				//		{
				//			index = j*img_grayTemp.rows+i;				
				//			currentBin[i] = bin[index];				
				//		}
				//	}

				//Median
				//	medianBlur(img_binary, img_binary, 5);
				//	medianBlur(img_binary, img_binary, 9);

				if(showSteps){
					namedWindow("Source Image",1);
					imshow("Source Image",input_image);		
				}

			/*	if(showSteps){
					namedWindow("Binary Image",1);
					imshow("Binary Image",img_binary);	
				}*/
				}
				if(imageNum ==numFrames - 2)
					break;
				
		}
		
		
		cvWaitKey(0);
	}
}

void adaptiveThreshold(Mat input, Mat bin, int width, int height)
{
	int S = width >> 3;
	int T = 15;

	unsigned long* integralImg = 0;
	int i, j;
	long sum=0;
	int count=0;
	int index;
	int x1, y1, x2, y2;
	int s2 = S/2;

	input.copyTo(bin);
	// create the integral image
	integralImg = (unsigned long*)malloc(width*height*sizeof(unsigned long*));
	for (i=0; i<width; i++)
	{
		uchar* currentInput = input.ptr<uchar>(i);	
		// reset this column sum
		sum = 0;
		for (j=0; j<height; j++)
		{
			index = j*width+i;
			sum += currentInput[j];
			if (i==0)
				integralImg[index] = sum;
			else
				integralImg[index] = integralImg[index-1] + sum;
		}
	}
	// perform thresholding
	for (i=0; i<width; i++)
	{
		uchar* currentBin = bin.ptr<uchar>(i);	
		uchar* currentInput = input.ptr<uchar>(i);	
		for (j=0; j<height; j++)
		{
			index = j*width+i;
			// set the SxS region
			x1=i-s2; x2=i+s2;
			y1=j-s2; y2=j+s2;
			// check the border
			if (x1 < 0) x1 = 0;
			if (x2 >= width) x2 = width-1;
			if (y1 < 0) y1 = 0;
			if (y2 >= height) y2 = height-1;
			count = (x2-x1)*(y2-y1);
			// I(x,y)=s(x2,y2)-s(x1,y2)-s(x2,y1)+s(x1,x1)
			sum = integralImg[y2*width+x2] -
				integralImg[y1*width+x2] -
				integralImg[y2*width+x1] +
				integralImg[y1*width+x1];
			if ((long)(currentInput[j]*count) < (long)(sum*(100-T)/100))
				currentBin[j] = 0;
			else
				currentBin[j] = 255;
		}
	}
	free (integralImg);
}

车牌识别技术详解四--二值化找轮廓做分割得样本(车牌分割,验证码分割)_第2张图片


JDI工作室主要从事视频图像处理,安防监控,机器视觉等项目开发,工作室成员都毕业与国内顶级高校,工作室现成员5个,其中2个专注于安防监控已有8年经验,3人专注于图像处理,应用开发2年。

JDI工作室的核心技术在于安防监控系统开发,实时高帧率视频采集,软件应用开发,图像视频处理与算法开发。从基于PC机器的开发到嵌入式开发,从android开发到Linux下的应用开发,从软件开发到硬件控制系统,从摄像头前段采集到处理到后端的识别等等,我们工作室都可以在较快的速度内实现并保质的完成,具体合作模式见附件开发合同,JDI工作室的所有开发严格按照合同执行,并提供2-6个月的软件后续维护和升级功能。


承接机器视觉检测,图像处理,OCR,车牌识别,人脸识别等等,各类项目开发。QQ:896922782
http://blog.csdn.net/zhubenfulovepoem/article/details/12343219



你可能感兴趣的:(定位,分割,字符检测,车牌分割,车牌检测)