题目:http://acm.upc.edu.cn/problem.php?id=2219
题意:
It's easy for ACMer to calculate A^X mod P. Now given seven integers n, A, K, a, b, m, P, and a
function f(x) which defined as following.
f(x) = K, x = 1
f(x) = (a*f(x-1) + b)%m , x > 1
Now, Your task is to calculate
( A^(f(1)) + A^(f(2)) + A^(f(3)) + ...... + A^(f(n)) ) modular P.
本题有点技巧,不要直接快速幂运算,这里要分两部分,详见代码:
#include <iostream> #include <string.h> #include <stdio.h> using namespace std; typedef long long LL; LL f[1000005]; LL x1[1000005]; LL x2[1000005]; LL quick_mod(LL a,LL b,LL m) { LL ans=1; while(b) { if(b&1) { ans=ans*a%m; b--; } b>>=1; a=a*a%m; } return ans; } LL multi(LL n,LL p) { return x1[n/50000]*x2[n%50000]%p; } int main() { LL t,n,A,K,a,b,m,p,tt=1; LL ans; cin>>t; while(t--) { cin>>n>>A>>K>>a>>b>>m>>p; A%=p;a%=m;b%=m; f[1]=K; for(int i=2;i<=n;i++) f[i]=(f[i-1]%m*a%m+(b%m))%m; LL val=quick_mod(A,50000,p); x1[0]=1; for(int i=1;i<50001;i++) x1[i]=(val%p)*x1[i-1]%p; x2[0]=1; for(int i=1;i<50001;i++) x2[i]=(A%p)*x2[i-1]%p; ans=0; for(int i=1;i<=n;i++) { ans+=multi(f[i],p); ans%=p; } cout<<"Case #"<<tt++<<": "; cout<<ans<<endl; } return 0; }