=====================================================
最简单的视音频播放示例系列文章列表:
最简单的视音频播放示例1:总述
最简单的视音频播放示例2:GDI播放YUV, RGB
最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)
最简单的视音频播放示例4:Direct3D播放RGB(通过Texture)
最简单的视音频播放示例5:OpenGL播放RGB/YUV
最简单的视音频播放示例6:OpenGL播放YUV420P(通过Texture,使用Shader)
最简单的视音频播放示例7:SDL2播放RGB/YUV
最简单的视音频播放示例8:DirectSound播放PCM
最简单的视音频播放示例9:SDL2播放PCM
=====================================================
上一篇文章记录了GDI播放视频的技术。打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术。Direct3D应该Windows下最常用的播放视频的技术。实际上视频播放只是Direct3D的“副业”,它主要用于3D游戏制作。当前主流的游戏几乎都是使用Direct3D制作的,例如《地下城与勇士》,《穿越火线》,《英雄联盟》,《魔兽世界》,《QQ飞车》等等。使用Direct3D可以用两种方式渲染视频:Surface和Texture。使用Surface相对来说比使用Texture要简单一些,但是不如使用Texture灵活。鉴于使用Surface更加容易上手,本文记录使用Direct3D中的Surface显示视频的技术。下一篇文章再记录使用Direct3D中的Texture显示视频的技术。
下面下简单记录一下背景知识。摘录修改了维基上的一部分内容(维基上这部分叙述貌似很不准确…):
Direct3D(简称:D3D)是微软公司在Microsoft Windows系统上开发的一套3D绘图API,是DirectX的一部份,目前广为各家显示卡所支援。1995年2月,微软收购了英国的Rendermorphics公司,将RealityLab 2.0技术发展成Direct3D标准,并整合到Microsoft Windows中,Direct3D在DirectX 3.0开始出现。后来在DirectX 8.0发表时与DirectDraw编程介面合并并改名为DirectX Graphics。Direct3D与Windows GDI是同层级组件。它可以直接调用底层显卡的功能。与OpenGL同为电脑绘图软件和电脑游戏最常使用的两套绘图API。HAL(Hardware Abstraction Layer):支持硬件加速的设备。在所有设备中运行速度是最快的,也是最常用的。每一个Device至少要有一个Swap Chain(交换链)。一个Swap Chain由一个或多个Back Buffer Surfaces(后台缓冲表面)组成。渲染在Back Buffer中完成。
Reference:模拟一些硬件还不支持的新功能。换言之,就是利用软件,在CPU对硬件渲染设备的一个模拟。
Type:描述Resource的类型。例如surface, volume, texture, cube texture, volume texture, surface texture, index buffer 或者vertex buffer。
Usage:描述Resource如何被使用。例如指定Resource是以只读方式调用还是以可读写的方式调用。
Format:数据的格式。比如一个二维表面的像素格式。例如,D3DFMT_R8G8B8的Format表明了数据格式是24 bits颜色深度的RGB数据。
Pool:描述Resource如何被管理和存储。默认的情况下Resource会被存储在设备的内存(例如显卡的显存)中。也可以指定Resource存储在系统内存中。
Direct3D API定义了一组Vertices(顶点), Textures(纹理), Buffers(缓冲区)转换到屏幕上的流程。这样的流程称为Rendering Pipeline(渲染流水线),它的各阶段包括:
Input Assembler(输入组装):从应用程序里读取vertex数据,将其装进流水线。PS:上述处理完后的数据可以理解为以下图片。即包含顶点信息,但不包含颜色信息。
Stream Output(流输出):将Vertex Shader和Geometry Shader处理完成的数据输出给使用者。PS:光栅化的过程可以理解为下图。即把顶点转换成像素。
Pixel Shader(像素着色器):对每个像素进行着色。注意这个地方可能需要自己编程。在记录Direct3D的视频显示技术之前,首先记录一下视频显示的基础知识。我自己归纳总结了以下几点知识。
在Direct3D中经常会出现“三角形”这个概念。这是因为在3D图形渲染中,所有的物体都是由三角形构成的。因为一个三角形可以表示一个平面,而3D物体就是由一个或多个平面构成的。比如下图表示了一个非常复杂的3D地形,它们也不过是由许许多多三角形表示的。
因此我们只要指定一个或多个三角形,就可以表示任意3D物体。后台缓冲表面和前台表面的概念总是同时出现的。简单解释一下它们的作用。当我们进行复杂的绘图操作时,画面可能有明显的闪烁。这是由于绘制的东西没有同时出现在屏幕上而导致的。“前台表面”+“后台缓冲表面”的技术可以解决这个问题。前台表面即我们看到的屏幕,后台缓冲表面则在内存当中,对我们来说是不可见的。每次的所有绘图操作不是在屏幕上直接绘制,而是在后台缓冲表面中进行,当绘制完成后,需要的时候再把绘制的最终结果显示到屏幕上。这样就解决了上述的问题。
实际上,上述技术还涉及到一个“交换链”(Swap Chain)的概念。所谓的“链”,指的是一系列的表面组成的一个合集。这些表面中有一个是前台表面(显示在屏幕上),剩下的都是后台缓冲表面。其实,简单的交换链不需要很多表面,只要两个就可以了(虽然感觉不像“链”)。一个后台缓冲表面,一个前台表面。所谓的“交换”,即是在需要呈现后台缓冲表面中的内容的时候,交换这两个表面的“地位”。即前台表面变成后台缓冲表面,后台缓冲表面变成前台表面。如此一来,后台缓冲表面的内容就呈现在屏幕上了。原先的前台表面,则扮演起了新的后台缓冲表面的角色,准备进行新的绘图操作。当下一次需要显示画面的时候,这两个表面再次交换,如此循环往复,永不停止。使用Direct3D开发之前需要安装DirectX SDK。安装没有难度,一路“Next”即可。
Microsoft DirectX SDK (June 2010)下载地址:#include <d3d9.h>
有关Direct3D的知识的介绍还有很多,在这里就不再记录了。正如那句俗话:“Talk is cheap, show me the code.”,光说理论还是会给人一种没有“脚踏实地”的感觉,下文将会结合代码记录Direct3D中使用Surface渲染视频的技术。
使用Direct3D的Surface播放视频一般情况下需要如下步骤:
1. 创建一个窗口(不属于D3D的API)1) 创建一个Device3. 循环显示画面
2) 基于Device创建一个Surface(离屏表面)
1) 清理
2) 一帧视频数据拷贝至 Surface
3) 开始一个Scene
4) Surface数据拷贝至 后台缓冲表面
5) 结束Scene
6) 显示( 后台缓冲表面-> 前台表面)
下面结合Direct3D播放YUV/RGB的示例代码,详细分析一下上文的流程。
建立一个Win32的窗口程序,就可以用于Direct3D的显示。程序的入口函数是WinMain(),调用CreateWindow()即可创建一个窗口。这一步是必须的,不然Direct3D绘制的内容就没有地方显示了。此处不再详述。
1) 创建一个Device
这一步完成的时候,可以得到一个IDirect3DDevice9接口的指针。创建一个Device又可以分成以下几个详细的步骤:IDirect3D9 *m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );
IDirect3D9接口是一个代表我们显示3D图形的物理设备的C++对象。它可以用于获得物理设备的信息和创建一个IDirect3DDevice9接口。例如,可以通过它的GetAdapterDisplayMode()函数获取当前主显卡输出的分辨率,刷新频率等参数,实现代码如下。
D3DDISPLAYMODE d3dDisplayMode; lRet = m_pDirect3D9->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &d3dDisplayMode );
/* Display Modes */ typedef struct _D3DDISPLAYMODE { UINT Width; UINT Height; UINT RefreshRate; D3DFORMAT Format; } D3DDISPLAYMODE;
D3DCAPS9 d3dcaps; lRet=m_pDirect3D9->GetDeviceCaps(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL,&d3dcaps); int hal_vp = 0; if( d3dcaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ){ // yes, save in ‘vp’ the fact that hardware vertex // processing is supported. hal_vp = D3DCREATE_HARDWARE_VERTEXPROCESSING; }
typedef struct _D3DPRESENT_PARAMETERS_ { UINT BackBufferWidth; UINT BackBufferHeight; D3DFORMAT BackBufferFormat; UINT BackBufferCount; D3DMULTISAMPLE_TYPE MultiSampleType; DWORD MultiSampleQuality; D3DSWAPEFFECT SwapEffect; HWND hDeviceWindow; BOOL Windowed; BOOL EnableAutoDepthStencil; D3DFORMAT AutoDepthStencilFormat; DWORD Flags; /* FullScreen_RefreshRateInHz must be zero for Windowed mode */ UINT FullScreen_RefreshRateInHz; UINT PresentationInterval; } D3DPRESENT_PARAMETERS;
//D3DPRESENT_PARAMETERS Describes the presentation parameters. D3DPRESENT_PARAMETERS d3dpp; ZeroMemory( &d3dpp, sizeof(d3dpp) ); d3dpp.Windowed = TRUE; d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD; d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
(c) 通过IDirect3D9的CreateDevice ()创建一个Device。
最后就可以调用IDirect3D9的CreateDevice()方法创建Device了。
CreateDevice()的函数原型如下:
HRESULT CreateDevice( UINT Adapter, D3DDEVTYPE DeviceType, HWND hFocusWindow, DWORD BehaviorFlags, D3DPRESENT_PARAMETERS *pPresentationParameters, IDirect3DDevice9** ppReturnedDeviceInterface );
Adapter:指定对象要表示的物理显示设备。D3DADAPTER_DEFAULT始终是主要的显示器适配器。
DeviceType:设备类型,包括D3DDEVTYPE_HAL(Hardware Accelerator,硬件加速)、D3DDEVTYPE_SW(SoftWare,软件)。下面列出使用Direct3D播放视频的时候CreateDevice()的一个典型的代码。
IDirect3DDevice9 *m_pDirect3DDevice; D3DPRESENT_PARAMETERS d3dpp; … m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING, &d3dpp, &m_pDirect3DDevice );
通过IDirect3DDevice9接口的CreateOffscreenPlainSurface ()方法即可创建一个Surface(离屏表面。所谓的“离屏”指的是永远不在屏幕上显示)。CreateOffscreenPlainSurface ()的函数原型如下所示:
HRESULT CreateOffscreenPlainSurface(UINT width, UINT height, D3DFORMAT format, D3DPOOL pool, IDirect3DSurface9 ** result, HANDLE * unused );
下面给出一个使用Direct3D播放视频的时候CreateTexture()的典型代码。该代码创建了一个像素格式为YV12的离屏表面,存储于显卡的显存中。
IDirect3DDevice9 * m_pDirect3DDevice; IDirect3DSurface9 *m_pDirect3DSurfaceRender; … m_pDirect3DDevice->CreateOffscreenPlainSurface( lWidth,lHeight, (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'), D3DPOOL_DEFAULT, &m_pDirect3DSurfaceRender, NULL);
循环显示画面就是一帧一帧的读取YUV/RGB数据,然后显示在屏幕上的过程,下面详述一下步骤。
1) 清理在显示之前,通过IDirect3DDevice9接口的Clear()函数可以清理Surface。个人感觉在播放视频的时候用不用这个函数都可以。因为视频本身就是全屏显示的。显示下一帧的时候自然会覆盖前一帧的所有内容。Clear()函数的原型如下所示:
HRESULT Clear( DWORD Count, const D3DRECT *pRects, DWORD Flags, D3DCOLOR Color, float Z, DWORD Stencil );
下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Clear()的典型代码。
IDirect3DDevice9 *m_pDirect3DDevice; m_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);
操作Surface的像素数据,需要使用IDirect3DSurface9的LockRect()和UnlockRect()方法。使用LockRect()锁定纹理上的一块矩形区域,该矩形区域被映射成像素数组。利用函数返回的D3DLOCKED_RECT结构体,可以对数组中的像素进行直接存取。LockRect()函数原型如下。
HRESULT LockRect( D3DLOCKED_RECT *pLockedRect, const RECT *pRect, DWORD Flags );
其中D3DLOCKED_RECT结构体定义如下所示。
typedef struct _D3DLOCKED_RECT { INT Pitch; void* pBits; } D3DLOCKED_RECT;
IDirect3DSurface9 *m_pDirect3DSurfaceRender; HRESULT lRet; ... D3DLOCKED_RECT d3d_rect; lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT); if(FAILED(lRet)) return -1; byte *pSrc = buffer; byte * pDest = (BYTE *)d3d_rect.pBits; int stride = d3d_rect.Pitch; unsigned long i = 0; //Copy Data (YUV420P) for(i = 0;i < pixel_h;i ++){ memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w); } for(i = 0;i < pixel_h/2;i ++){ memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2); } for(i = 0;i < pixel_h/2;i ++){ memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2); } lRet=m_pDirect3DSurfaceRender->UnlockRect();
GetBackBuffer()函数原型如下。
HRESULT GetBackBuffer( UINT iSwapChain, UINT BackBuffer, D3DBACKBUFFER_TYPE Type, IDirect3DSurface9 ** ppBackBuffer );
ppBackBuffer:保存后台缓冲表面的LPDIRECT3DSURFACE9对象。
StretchRect()可以将一个矩形区域的像素从设备内存的一个Surface转移到另一个Surface上。StretchRect()函数的原型如下。
HRESULT StretchRect( IDirect3DSurface9 * pSourceSurface, CONST RECT * pSourceRect, IDirect3DSurface9 * pDestSurface, CONST RECT * pDestRect, D3DTEXTUREFILTERTYPE Filter );
下面给出的代码将离屏表面的数据传给了后台缓冲表面。一但传给了后台缓冲表面,就可以用于显示了。
IDirect3DDevice9 *m_pDirect3DDevice; IDirect3DSurface9 *m_pDirect3DSurfaceRender; IDirect3DSurface9 * pBackBuffer; m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer); m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);
使用IDirect3DDevice9接口的Present ()显示结果。Present ()的原型如下。
HRESULT Present( const RECT *pSourceRect, const RECT *pDestRect, HWND hDestWindowOverride, const RGNDATA *pDirtyRegion );
下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Present ()的典型代码。从代码可以看出,全部设置为NULL就可以了。
IDirect3DDevice9 *m_pDirect3DDevice; … m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );
文章至此,使用Direct3D显示YUV/RGB的全部流程就记录完毕了。最后贴一张图总结上述流程。
完整的代码如下所示。
/** * 最简单的Direct3D播放视频的例子(Direct3D播放RGB/YUV)[Surface] * Simplest Video Play Direct3D (Direct3D play RGB/YUV)[Surface] * * 雷霄骅 Lei Xiaohua * [email protected] * 中国传媒大学/数字电视技术 * Communication University of China / Digital TV Technology * http://blog.csdn.net/leixiaohua1020 * * 本程序使用Direct3D播放RGB/YUV视频像素数据。使用D3D中的Surface渲染数据。 * 使用Surface渲染视频相对于另一种方法(使用Texture)来说,更加简单,适合 * 新手学习。 * 函数调用步骤如下: * * [初始化] * Direct3DCreate9():获得IDirect3D9 * IDirect3D9->CreateDevice():通过IDirect3D9创建Device(设备)。 * IDirect3DDevice9->CreateOffscreenPlainSurface():通过Device创建一个Surface(离屏表面)。 * * [循环渲染数据] * IDirect3DSurface9->LockRect():锁定离屏表面。 * memcpy():填充数据 * IDirect3DSurface9->UnLockRect():解锁离屏表面。 * IDirect3DDevice9->BeginScene():开始绘制。 * IDirect3DDevice9->GetBackBuffer():获得后备缓冲。 * IDirect3DDevice9->StretchRect():拷贝Surface数据至后备缓冲。 * IDirect3DDevice9->EndScene():结束绘制。 * IDirect3DDevice9->Present():显示出来。 * * This software play RGB/YUV raw video data using Direct3D. It uses Surface * in D3D to render the pixel data. Compared to another method (use Texture), * it is more simple and suitable for the beginner of Direct3D. * The process is shown as follows: * * [Init] * Direct3DCreate9(): Get IDirect3D9. * IDirect3D9->CreateDevice(): Create a Device. * IDirect3DDevice9->CreateOffscreenPlainSurface(): Create a Offscreen Surface. * * [Loop to Render data] * IDirect3DSurface9->LockRect(): Lock the Offscreen Surface. * memcpy(): Fill pixel data... * IDirect3DSurface9->UnLockRect(): UnLock the Offscreen Surface. * IDirect3DDevice9->BeginScene(): Begin drawing. * IDirect3DDevice9->GetBackBuffer(): Get BackBuffer. * IDirect3DDevice9->StretchRect(): Copy Surface data to BackBuffer. * IDirect3DDevice9->EndScene(): End drawing. * IDirect3DDevice9->Present(): Show on the screen. */ #include <stdio.h> #include <tchar.h> #include <d3d9.h> CRITICAL_SECTION m_critial; IDirect3D9 *m_pDirect3D9= NULL; IDirect3DDevice9 *m_pDirect3DDevice= NULL; IDirect3DSurface9 *m_pDirect3DSurfaceRender= NULL; RECT m_rtViewport; //set '1' to choose a type of file to play //Read BGRA data #define LOAD_BGRA 0 //Read YUV420P data #define LOAD_YUV420P 1 //Width, Height const int screen_w=500,screen_h=500; const int pixel_w=320,pixel_h=180; FILE *fp=NULL; //Bit per Pixel #if LOAD_BGRA const int bpp=32; #elif LOAD_YUV420P const int bpp=12; #endif unsigned char buffer[pixel_w*pixel_h*bpp/8]; void Cleanup() { EnterCriticalSection(&m_critial); if(m_pDirect3DSurfaceRender) m_pDirect3DSurfaceRender->Release(); if(m_pDirect3DDevice) m_pDirect3DDevice->Release(); if(m_pDirect3D9) m_pDirect3D9->Release(); LeaveCriticalSection(&m_critial); } int InitD3D( HWND hwnd, unsigned long lWidth, unsigned long lHeight ) { HRESULT lRet; InitializeCriticalSection(&m_critial); Cleanup(); m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION ); if( m_pDirect3D9 == NULL ) return -1; D3DPRESENT_PARAMETERS d3dpp; ZeroMemory( &d3dpp, sizeof(d3dpp) ); d3dpp.Windowed = TRUE; d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD; d3dpp.BackBufferFormat = D3DFMT_UNKNOWN; GetClientRect(hwnd,&m_rtViewport); lRet=m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING, &d3dpp, &m_pDirect3DDevice ); if(FAILED(lRet)) return -1; #if LOAD_BGRA lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface( lWidth,lHeight, D3DFMT_X8R8G8B8, D3DPOOL_DEFAULT, &m_pDirect3DSurfaceRender, NULL); #elif LOAD_YUV420P lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface( lWidth,lHeight, (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'), D3DPOOL_DEFAULT, &m_pDirect3DSurfaceRender, NULL); #endif if(FAILED(lRet)) return -1; return 0; } bool Render() { HRESULT lRet; //Read Data //RGB if (fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp) != pixel_w*pixel_h*bpp/8){ // Loop fseek(fp, 0, SEEK_SET); fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp); } if(m_pDirect3DSurfaceRender == NULL) return -1; D3DLOCKED_RECT d3d_rect; lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT); if(FAILED(lRet)) return -1; byte *pSrc = buffer; byte * pDest = (BYTE *)d3d_rect.pBits; int stride = d3d_rect.Pitch; unsigned long i = 0; //Copy Data #if LOAD_BGRA int pixel_w_size=pixel_w*4; for(i=0; i< pixel_h; i++){ memcpy( pDest, pSrc, pixel_w_size ); pDest += stride; pSrc += pixel_w_size; } #elif LOAD_YUV420P for(i = 0;i < pixel_h;i ++){ memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w); } for(i = 0;i < pixel_h/2;i ++){ memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2); } for(i = 0;i < pixel_h/2;i ++){ memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2); } #endif lRet=m_pDirect3DSurfaceRender->UnlockRect(); if(FAILED(lRet)) return -1; if (m_pDirect3DDevice == NULL) return -1; m_pDirect3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0 ); m_pDirect3DDevice->BeginScene(); IDirect3DSurface9 * pBackBuffer = NULL; m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer); m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR); m_pDirect3DDevice->EndScene(); m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL ); pBackBuffer->Release(); return true; } LRESULT WINAPI MyWndProc(HWND hwnd, UINT msg, WPARAM wparma, LPARAM lparam) { switch(msg){ case WM_DESTROY: Cleanup(); PostQuitMessage(0); return 0; } return DefWindowProc(hwnd, msg, wparma, lparam); } int WINAPI WinMain( __in HINSTANCE hInstance, __in_opt HINSTANCE hPrevInstance, __in LPSTR lpCmdLine, __in int nShowCmd ) { WNDCLASSEX wc; ZeroMemory(&wc, sizeof(wc)); wc.cbSize = sizeof(wc); wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1); wc.lpfnWndProc = (WNDPROC)MyWndProc; wc.lpszClassName = L"D3D"; wc.style = CS_HREDRAW | CS_VREDRAW; RegisterClassEx(&wc); HWND hwnd = NULL; hwnd = CreateWindow(L"D3D", L"Simplest Video Play Direct3D (Surface)", WS_OVERLAPPEDWINDOW, 100, 100, 500, 500, NULL, NULL, hInstance, NULL); if (hwnd==NULL){ return -1; } if(InitD3D( hwnd, pixel_w, pixel_h)==E_FAIL){ return -1; } ShowWindow(hwnd, nShowCmd); UpdateWindow(hwnd); #if LOAD_BGRA fp=fopen("../test_bgra_320x180.rgb","rb+"); #elif LOAD_YUV420P fp=fopen("../test_yuv420p_320x180.yuv","rb+"); #endif if(fp==NULL){ printf("Cannot open this file.\n"); return -1; } MSG msg; ZeroMemory(&msg, sizeof(msg)); while (msg.message != WM_QUIT){ //PeekMessage, not GetMessage if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){ TranslateMessage(&msg); DispatchMessage(&msg); } else{ Sleep(40); Render(); } } UnregisterClass(L"D3D", hInstance); return 0; }
1.可以通过设置定义在文件开始出的宏,决定读取哪个格式的像素数据(bgra,yuv420p)。
//set '1' to choose a type of file to play //Read BGRA data #define LOAD_BGRA 0 //Read YUV420P data #define LOAD_YUV420P 1
2.窗口的宽高为screen_w,screen_h。像素数据的宽高为pixel_w,pixel_h。它们的定义如下。
//Width, Height const int screen_w=500,screen_h=500; const int pixel_w=320,pixel_h=180;
不论选择读取哪个格式的文件,程序的最终输出效果都是一样的,如下图所示。
代码位于“Simplest Media Play”中
注:
该项目会不定时的更新并修复一些小问题,最新的版本请参考该系列文章的总述页面:
《最简单的视音频播放示例1:总述》