传送门:http://www.spoj.com/problems/VLATTICE/
SPOJ Problem Set (classical)7001. Visible Lattice PointsProblem code: VLATTICE |
Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y.
Input :
The first line contains the number of test cases T. The next T lines contain an interger N
Output :
Output T lines, one corresponding to each test case.
Sample Input :
3
1
2
5
Sample Output :
7
19
175
Constraints :
T <= 50
1 <= N <= 1000000
Added by: | Varun Jalan |
Date: | 2010-07-29 |
Time limit: | 7s |
Source limit: | 50000B |
Memory limit: | 256MB |
Cluster: | Pyramid (Intel Pentium III 733 MHz) |
Languages: | All except: NODEJS PERL 6 |
Resource: | own problem used for Indian ICPC training camp |
题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1。
题解:需要用到莫比乌斯反演,好久之前都看过这定律,直到今天做了这道题才弄懂。
首先我们介绍下莫比乌斯反演:
g(n)=sigma(d|n,f(d))
f(n)=sigma(d|n,u(d)*g(n/d))
u(d)定义
若d=1 那么μ(d)=1
若d=p1p2…pr (r个不同质数,且次数都唯一)μ(d)=(-1)^r
其余 μ(d)=0
其实还有一种写法:
g(n)=sigma(d|n,f(d))
f(n)=sigma(n|d,u(d/n)*g(d))
这里我们设g(x)为满足x | (i, j, k)的个数,f(x)为满足(i, j, k) = x的个数。
所以g(n)=sigma(d|n, f(d)) = [n/x] * [n/x] * [n/x]。
而题目要求f(1)等于多少,f(1)=sigma(1|d,u(d)*g(d))。
所以现在关键的是求u(d),可以通过线性筛选素数的方法求解u,详细请看下面代码。
然后还要加上三个平面上面的gcd,直接mu[i]*(n/i)*(n/i)*(n/i+3),二维的比三维的少一维-三个平面。
别忘了还有x,y,z三个轴。
好了,到这里全部的算法都以说清楚了……
AC代码:
10188459 | 2013-10-06 09:31:55 | xiaohao | Visible Lattice Points | accepted edit run |
4.65 | 15M |
#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <cstdlib> #include <cmath> #include <vector> #include <list> #include <deque> #include <queue> #include <iterator> #include <stack> #include <map> #include <set> #include <algorithm> #include <cctype> using namespace std; #define si1(a) scanf("%d",&a) #define si2(a,b) scanf("%d%d",&a,&b) #define sd1(a) scanf("%lf",&a) #define sd2(a,b) scanf("%lf%lf",&a,&b) #define ss1(s) scanf("%s",s) #define pi1(a) printf("%d\n",a) #define pi2(a,b) printf("%d %d\n",a,b) #define mset(a,b) memset(a,b,sizeof(a)) #define forb(i,a,b) for(int i=a;i<b;i++) #define ford(i,a,b) for(int i=a;i<=b;i++) typedef long long LL; const int N=1000010; const int INF=0x3f3f3f3f; const double PI=acos(-1.0); const double eps=1e-7; int mu[N]; LL x,pri[N]; bool vis[N]; void xiaohao_mu()//求莫比乌斯反演中的mu { mset(vis,0);mset(mu,0); x=0; LL n=1000000; mu[1]=1; for(LL i=2;i<=n;i++) { if(!vis[i])//筛选素数法 { pri[x++]=i; mu[i]=-1;//素数一定等于-1 } for(LL j=0;j<x&&i*pri[j]<=n;j++) { vis[i*pri[j]]=1; if(i%pri[j]) mu[i*pri[j]]=-mu[i]; else { mu[i*pri[j]]=0; break; } } } } int main() { xiaohao_mu(); int T; LL n; cin>>T; while(T--) { cin>>n; LL sum=3;//x,y,z轴上面的3个 for(LL i=1;i<=n;i++) sum+=mu[i]*(n/i)*(n/i)*(n/i+3); cout<<sum<<endl; } return 0; }