- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- Kafka:架构与核心机制
J老熊
kafka架构分布式面试系统架构后端
ApacheKafka是一种高吞吐量的分布式消息队列,广泛应用于实时数据流处理和大数据架构中。本文将详细探讨Kafka的架构、Replica管理、消息读取、分区策略、可靠性保障等核心机制。1.Kafka的架构1.1组件概述Kafka的架构由多个组件构成,主要包括以下部分:Broker:Kafka集群中的服务器,每个Broker存储一部分消息。Kafka集群通常由多个Broker组成,以提高可用性和
- 车联网安全
黄一113530
网络安全网络安全渗透测试
1、智能汽车安全如何分类?智能汽车终极发展阶段是无人驾驶,车联网则是无人驾驶实现的基础,然而车联网技术应用过程中却会带来信息安全问题,具体可分为以下三种:一、用户隐私汽车智能化是建立在车辆动态数据收集及应用上的,如车辆行驶、车体、动力、安全及环境数据等层面,尤其是车辆行驶数据一直都被视为变现的大数据金矿,无论是车联网前装的车商,还是车联网后装的互联网科技公司,都在用户不知情的情况下收集车主驾驶历史
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- 【趋势】《2024—2026金融科技十大趋势预测》一览
学客汇
商业研究商业观察人工智能大数据金融科技科技洞察IT趋势金融行业预测
本白皮书基于新华三在金融行业的前沿实践和IDC的全球研究成果,深入分析了金融科技领域的十大关键趋势,旨在为金融机构提供前瞻性的战略指导和业务创新的参考。导言当前,在地缘政治冲突加剧、商业经济市场环境高度不确定、数字化业务加速发展的背景下,金融行业处于深度变革的潮流中,金融机构亟需重新思考其在技术支出、业务决策及业务创新发展等方面的投资重点。此外,金融机构也越来越需要借助大数据和AI技术来提升业务的
- 【爬虫】使用 Scrapy 框架爬取豆瓣电影 Top 250 数据的完整教程
m0_74825360
面试学习路线阿里巴巴爬虫scrapy
前言在大数据和网络爬虫领域,Scrapy是一个功能强大且广泛使用的开源爬虫框架。它能够帮助我们快速地构建爬虫项目,并高效地从各种网站中提取数据。在本篇文章中,我将带大家从零开始使用Scrapy框架,构建一个简单的爬虫项目,爬取豆瓣电影Top250的电影信息。Scrapy官方文档:ScrapyDocumentation豆瓣电影Top250:豆瓣电影Top250本文的爬虫项目配置如下:系统:Windo
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- CDH大数据平台
梦龙zmc
大数据大数据
CDH概念CDH(ClouderaDistributionIncludingApacheHadoop)是由Cloudera公司提供的一个集成了ApacheHadoop以及相关生态系统的发行版本。CDH是一个大数据平台,简化和加速了大数据处理分析的部署和管理。CDH提供Hadoop的核心元素-可伸缩存储和分布式计算-以及基于web的用户界面和重要的企业功能。CDH是Apache许可的开放源码,是唯一
- Spring Boot集成RocketMQ实现分布式事务
missterzy
分布式与微服务消息队列(MQ)java-rocketmqspringbootrocketmq
RocketMQ是由阿里巴巴集团开发的一款高性能、高可靠、分布式的开源消息中间件,它在2012年对外开源,并于2016年捐赠给Apache软件基金会,随后在2017年成为了Apache的顶级项目。RocketMQ的设计旨在满足互联网业务场景中的海量消息传递需求,尤其擅长处理高并发、大数据量以及实时计算场景。主要特点和功能包括:1.分布式架构:RocketMQ采用了分布式部署架构,允许生产者、消费者
- Java 大视界 -- Java 大数据中的自然语言生成技术与实践(63)
青云交
大数据新视界Java大视界大数据自然语言生成基于规则模型基于统计模型基于深度学习模型新闻写作智能客服
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 动态规划详解-最小路径和问题【python】
数据分析螺丝钉
LeetCode刷题与模拟面试动态规划算法leetcodepython数据结构
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。会一些的技术:数据分析、算法、SQL、大数据相关、python欢迎加入社区:码上找工作作者专栏每日更新:LeetCode解锁1000题:打怪升级之旅python数据分析可视化:企业实战案例备注说明:方便大家阅读,统一使用python,带必要注释,公众号数据分析螺丝钉一起打怪升级1.问题介绍和应用场景最小路径和问题是一个常见的动态规划问
- Java 大视界 -- Java 大数据中的知识图谱构建与应用(62)
青云交
大数据新视界Java大视界大数据知识图谱信息抽取知识融合智能搜索智能推荐风险评估
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- 用 Java 的思路快速学习 Scala
进朱者赤
其他大数据scalaScala
引言Scala是一种结合了面向对象和函数式编程的现代编程语言,广泛应用于大数据处理框架如ApacheSpark和ApacheFlink。对于熟悉Java的开发者来说,Scala的学习曲线相对平缓。本文将通过类比Java中的概念,帮助Java开发者快速上手Scala。1.基本语法1.1.数据类型以下是Scala和Java数据类型的汇总表格:Scala数据类型Java数据类型说明Intint32位整数
- kaggle上面有哪些适合机器学习新手的比赛和项目
xiamu_CDA
机器学习人工智能
Kaggle上面有哪些适合机器学习新手的比赛和项目?在当今数据驱动的时代,机器学习已经成为一门炙手可热的技能。Kaggle作为全球最大的数据科学竞赛平台,不仅汇聚了众多顶尖的数据科学家和机器学习工程师,也为初学者提供了丰富的学习资源和实战机会。对于机器学习新手来说,选择合适的比赛和项目是至关重要的第一步。本文将为你推荐一些适合新手的Kaggle比赛和项目,并提供一些实用的建议,帮助你在机器学习的道
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- 函数计算 FC 诚邀您参加【Cloud Up 挑战赛】赢取丰厚奖品!
github
亲爱的开发者们,函数计算FC团队向你们发出诚挚邀请,加入我们即将举办的【CloudUp挑战赛】,这不仅是一场技术盛宴,更是一次展示才华与创新的机会。从互联网应用开发到AI、大数据,再到现代化应用开发,本次赛事覆盖了所有你渴望掌握的技能点,旨在为你提供一个实践平台,将理论知识转化为解决实际业务问题的能力。挑战赛为期三周,活动时间为2024年11月25日至12月13日,立即参与:https://dev
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 未来商贸物流:人工智能与大数据的深度融合
呆码科技
临沂软件开发软件开发商贸物流科技人工智能
未来商贸物流:人工智能与大数据的深度融合在当今数字化浪潮汹涌澎湃的时代,商贸物流行业正站在变革的十字路口,而人工智能与大数据宛如一对闪耀的双子星,为其照亮前行的道路,深度融合之下,一个全新的未来画卷正徐徐展开。智能预测需求:精准把握市场脉搏传统的商贸物流往往依赖过往经验和粗略的市场调研来预估货物需求,这就如同在迷雾中摸索,充满不确定性。而如今,借助大数据的海量存储与超强分析能力,以及人工智能的深度
- 【大数据之路11】多范式编程语言 Scala
程序员老五
大数据scala开发语言
多范式编程语言Scala1.Scala概述1.Scala介绍2.学习Scala的必要性1.基于编程语⾔⾃身2.基于活跃度2.Scala基础语法1.HelloScala2.变量定义1.变量与常量2.Scala自动类型识别3.lazy懒加载3.数据类型1.相关概述1.Scala数据类型列表2.测试代码3.Scala数据类型结构图2.Scala基本类型操作3.编码规范4.流程控制1.if2.块表达式3.
- Julia语言的计算机基础
Code侠客行
包罗万象golang开发语言后端
Julia语言的计算机基础引言随着数据科学、机器学习和高性能计算的快速发展,对编程语言的需求也日益增加。在众多编程语言中,Julia语言因其独特的设计理念和高性能而迅速崛起。本文将详细探讨Julia语言的基础知识,包括其历史背景、安装与环境配置、基本语法、数据结构、函数与模块、以及性能优化等方面,旨在为对Julia感兴趣的读者提供一份全面的入门指南。一、Julia语言简介1.1历史背景Julia是
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 2024年大数据最全数据仓库|数据库面试题总结_面试题 数据仓库
2301_82243558
程序员大数据数据仓库数据库
这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。索引有哪几种类型?主键索引:数据列不允许重复,不允许为NULL,一个表只能有一个主键。唯一索引:数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。可以通过ALTERTABLEtable_nameADDUNIQUE(column);创建唯一索引可以通过ALTERTABLEtable_nameADDUNI
- 机器学习问题:AttributeError: ‘NoneType‘ object has no attribute ‘split‘ 解决办法
零零鲎
机器学习人工智能
参考博客:本次博客参考http://t.csdnimg.cn/8E7eH。写下来主要是为了整理自己在学习过程中遇到的问题并把解决办法列出来。学习内容:如果运行出现:AttributeError:‘NoneType’objecthasnoattribute'split’这样的问题。网上有很多解决办法是降级numpy到1.21.4。然后上面博客给出的解决方案是升级threadpoolctl。可以使用命
- AI Agent:一场智能革命的开始
机器人openai区块链
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- C# 与.NET 日志变革:JSON 让程序“开口说清话”
步、步、为营
c#.netjson
一、引言:日志新时代的开启在软件开发的漫长旅程中,日志一直是我们不可或缺的伙伴。它就像是应用程序的“黑匣子”,默默地记录着程序运行过程中的点点滴滴,为我们在调试、排查问题以及性能优化时提供关键线索。在早期,文本日志是我们最常用的记录方式,它简单直接,就像我们随手写下的日记,记录着事件发生的时间、内容等基本信息。然而,随着软件系统规模的不断扩大,架构日益复杂,尤其是在微服务、大数据分析以及云原生应用
- python方差分析误差棒_一文讲透,带你学会用Python绘制带误差棒的柱状图和条形图...
加勒比考斯
python方差分析误差棒
Python数据可视化,作为数据常用的必备技能,是目前大数据和数据分析的一个热门,而matplotlib库作为Python中最为常用和经典的二维绘图库,受到了很多人的青睐,最近已经和大家共同探讨了多种类型的图表的绘制,其中关于误差棒图,咱们已经在上次一起讨论过了,今天咱们继续深入研究误差棒图相关的知识。那今天咱们聊点什么呢?咱们一起探讨一下如何在Python中绘制带误差棒的柱状图和条形图吧!首先,
- 【杂谈】-为什么Python是AI的首选语言
视觉与物联智能
杂谈python人工智能开发语言深度学习机器学习
为什么Python是AI的首选语言文章目录为什么Python是AI的首选语言1、为何Python引领人工智能发展1.1可用性和生态系统1.2用户群和用例1.3效率辅助2、AI项目对Python开发人员的要求3、如何开启你的AI学习之旅人工智能的广泛应用正在软件工程领域引发范式转变。Python凭借其易用性、成熟的生态系统以及满足人工智能和机器学习(ML)工作流数据驱动需求的能力,迅速成为人工智能开
- 【大数据入门核心技术-Hive】(十六)hive表加载csv格式数据或者json格式数据
forest_long
大数据技术入门到21天通关大数据hivehadoop开发语言后端数据仓库
一、环境准备hive安装部署参考:【大数据入门核心技术-Hive】(三)Hive3.1.2非高可用集群搭建【大数据入门核心技术-Hive】(四)Hive3.1.2高可用集群搭建二、hive加载Json格式数据1、数据准备vistu.json[{"id":111,"name":"name111"},{"id":222,"name":"name22"}]上传到hdfshadoopfs-putstu.j
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p