实例来自书籍《Oreilly.Getting.Started.with.Storm.Aug.2012》
先讲下我们这次所需涉及到的概念:Topology、Spout、Blot
Topology:Storm的运行单位,相当于Hadoop中的job,一个topology是spouts和bolts组成的图, 通过stream groupings将图中的spouts和bolts连接起来
Spout:消息源,topology里面的消息生产者,一般来说消息源会从一个外部源读取数据并且向topology里面发出消息:tuple。
Blot:所有的消息处理逻辑被封装在bolts里面。Bolts可以做很多事情:过滤,聚合,查询数据库等等。
一下是实例的流程图
words.txt--将要执行wordcount操作的文件
storm test are great is an storm simple application but very powerfull really StOrm is great
1、Topology的创建
<span style="white-space:pre"> </span>//Topology definition TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("word-reader",new WordReader()); builder.setBolt("word-normalizer", new WordNormalizer()) .shuffleGrouping("word-reader"); builder.setBolt("word-counter", new WordCounter(),1) .fieldsGrouping("word-normalizer", new Fields("word")); //Configuration Config conf = new Config(); conf.put("wordsFile", args[0]); conf.setDebug(false); //Topology run conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("Getting-Started-Toplogie", conf, builder.createTopology()); Thread.sleep(1000); cluster.shutdown();从上面代码我们可以看到,Topology是通过TopologyBuilder的createTopology来创建。通过TopologyBuilder对象设置Spout以及Blot。
Config对象用于设置集群计算所需的参数,这里的参数是要执行wordcount操作的文件路径。
例子是以本地集群方式运行。
Topology提交通过cluster对象的submitTopology方法来提交。参数包括任务名、配置、以及Topology对象。
注:我们可以看下这里的TopologyBuilder对象的创建。
TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("word-reader",new WordReader()); builder.setBolt("word-normalizer", new WordNormalizer()) .shuffleGrouping("word-reader"); builder.setBolt("word-counter", new WordCounter(),1) .fieldsGrouping("word-normalizer", new Fields("word"));可以看出,这里有一个流程的执行关系。也可以说是一定订阅关系。第一个blot设置了shuffleGrouping的名称为Spout的名称,而第二个blot则指定了第一个blot的名称。就如我们上面的流程图执行流程一致。
2、Spout(WordReader)
package spouts; import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.util.Map; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichSpout; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; public class WordReader extends BaseRichSpout { private SpoutOutputCollector collector; private FileReader fileReader; private boolean completed = false; public void ack(Object msgId) { System.out.println("OK:"+msgId); } public void close() {} public void fail(Object msgId) { System.out.println("FAIL:"+msgId); } /** * The only thing that the methods will do It is emit each * file line */ public void nextTuple() { /** * The nextuple it is called forever, so if we have been readed the file * we will wait and then return */ if(completed){ try { Thread.sleep(1000); } catch (InterruptedException e) { //Do nothing } return; } String str; //Open the reader BufferedReader reader = new BufferedReader(fileReader); try{ //Read all lines while((str = reader.readLine()) != null){ /** * By each line emmit a new value with the line as a their */ this.collector.emit(new Values(str),str); } }catch(Exception e){ throw new RuntimeException("Error reading tuple",e); }finally{ completed = true; } } /** * We will create the file and get the collector object */ public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { try { this.fileReader = new FileReader(conf.get("wordsFile").toString()); } catch (FileNotFoundException e) { throw new RuntimeException("Error reading file ["+conf.get("wordFile")+"]"); } this.collector = collector; } /** * Declare the output field "line" */ public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("line")); } }* declareOutputFields方法用于定义输出字段名
* 首先集群提交Topology之后,会先调用open方法,open内部使用config对象获取文件并获取fileReader对象。
* nextTuple()方法通过BufferReader读取到fileReader数据之后,读取每一行数据,然后通过emit方法发送数据到订阅了数据的blot上。
3、第一个Blot(拆分出所有的wordcount传入下一个blot)
package bolts; import backtype.storm.topology.BasicOutputCollector; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseBasicBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; public class WordNormalizer extends BaseBasicBolt { public void cleanup() {} /** * The bolt will receive the line from the * words file and process it to Normalize this line * * The normalize will be put the words in lower case * and split the line to get all words in this */ public void execute(Tuple input, BasicOutputCollector collector) { String sentence = input.getString(0); String[] words = sentence.split(" "); for(String word : words){ word = word.trim(); if(!word.isEmpty()){ word = word.toLowerCase(); collector.emit(new Values(word)); } } } /** * The bolt will only emit the field "word" */ public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } }这个blot基本上没做什么事情,只是在execute方法中将words切分然后emit到下一个blot
4、第二个blot(执行单词统计)
package bolts; import java.util.HashMap; import java.util.Map; import backtype.storm.task.TopologyContext; import backtype.storm.topology.BasicOutputCollector; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseBasicBolt; import backtype.storm.tuple.Tuple; public class WordCounter extends BaseBasicBolt { Integer id; String name; Map<String, Integer> counters; /** * At the end of the spout (when the cluster is shutdown * We will show the word counters */ @Override public void cleanup() { System.out.println("-- Word Counter ["+name+"-"+id+"] --"); for(Map.Entry<String, Integer> entry : counters.entrySet()){ System.out.println(entry.getKey()+": "+entry.getValue()); } } /** * On create */ @Override public void prepare(Map stormConf, TopologyContext context) { this.counters = new HashMap<String, Integer>(); this.name = context.getThisComponentId(); this.id = context.getThisTaskId(); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {} @Override public void execute(Tuple input, BasicOutputCollector collector) { String str = input.getString(0); /** * If the word dosn't exist in the map we will create * this, if not We will add 1 */ if(!counters.containsKey(str)){ counters.put(str, 1); }else{ Integer c = counters.get(str) + 1; counters.put(str, c); } } }这里定义了一个HashMap counters用于存储单词的统计结果。在execute方法中执行单词统计。
转载请注明来源地址:http://blog.csdn.net/weijonathan/article/details/17399077