- 中国剩余定理
SweetCode
算法python数据结构
中国剩余定理(ChineseRemainderTheorem)详解:从原理到代码实现在数论和计算机科学中,中国剩余定理(CRT)是一种处理多个模运算方程组的强大工具,它不仅用于解线性同余方程组,还广泛应用于密码学、RSA算法、信号处理等领域。本文将从原理讲起,结合例子逐步深入,并提供可运行的代码实现。一、什么是中国剩余定理?中国剩余定理是关于整数同余方程组求解的一条基本定理,它的基本形式如下:定理
- 算法 数论 素数(质数)
溺水少年
算法算法c++开发语言
目录1.素数2.判断素数3.素数筛法1.素数素数定义:若一个正整数无法被除了1和它自身之外的任何自然数整除,则称该数为质数(或素数),否则称该正整数为合数。注:1不是素数(也不是合数),2是素数。在整个自然数集合中,质数的数量不多,分布比较稀疏。对于一个足够大的整数N,不超过N的质数大约有N/lnN个,即每InN个数中大约有1个质数。2.判断素数试除法时间复杂度:O(根号n)boolisprime
- 【数论】 质数
triticale
算法算法笔记
一、质数定义质数(英文名:Primenumber)又称素数,是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。否则称为合数(规定1既不是质数也不是合数)。二、试除法判定质数给定n个正整数aia_iai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正整数aia_iai。输出格式共n行,其中第ii行输出第ii个正整数aia_iai是否为质数,是则输出Yes,
- 【蓝桥杯算法笔记合集】
兮于怀
蓝桥杯专题蓝桥杯算法
蓝桥杯算法笔记合集链接:A.递归B.递推C.二分D.前缀和E.数学F.简单DPG.枚举H.模拟I.排序J.数论K.贪心
- 青少年编程与数学 02-015 大学数学知识点 06课题、离散数学
明月看潮生
编程与数学第02阶段青少年编程编程与数学大学数学离散数学
青少年编程与数学02-015大学数学知识点06课题、离散数学一、数理逻辑二、集合论三、代数系统四、图论五、初等数论六、组合数学总结离散数学是研究离散对象及其结构的数学学科,它在计算机科学、信息论、密码学等领域有着广泛的应用。这里是离散数学核心知识点的详细汇总。一、数理逻辑命题逻辑基本概念:命题、命题常项、命题变项、联结词(如“非”、“或”、“与”等)、命题公式。悖论与非命题:悖论指自相矛盾的命题,
- 模运算核心性质与算法应用:从数学原理到编程实践
EnigmaCoder
算法算法
目录前言数学性质:模运算的理论基石基本定义:余数的本质四则运算规则:保持同余性的关键编程实践:模运算的工程化技巧避免数值溢出:分步取模是关键处理负数取模:确保结果非负大数幂取模:快速幂算法组合数取模:预计算阶乘与逆元常见问题解决方案:一张表帮你避坑总结:模运算的核心价值前言大家好!我是EnigmaCoder。在算法设计与数论问题中,模运算(ModuloOperation)是处理大数、周期性问题和哈
- 【蓝桥杯】考前冲刺!
Guiat
算法竞赛蓝桥杯
个人主页:Guiat归属专栏:算法竞赛文章目录1.暴力枚举---好数2.打表规律---数字诗意3.数论入门---宝石组合4.排序策略---封闭图形个数5.贪心策略---训练士兵6.哈希技巧---团建正文总共6道真题,围绕蓝桥杯高频考点逐一展开。1.暴力枚举—好数【题目】好数【AC_Code】#include#defineIOSios::sync_with_stdio(0);cin.tie(0);c
- 十六届蓝桥杯C++组备赛必看:高频算法与核心知识点梳理
A好名字A
蓝桥杯c++算法
制作不易,感谢浏览。文章目录一、避开那些"送分题"的坑1.1数据类型与极值的边界1.2STL容器使用速查表1.3C++11/14/17新特性速览(慎用高级语法)二、暴力算法的蜕变2.1搜索结果与剪枝艺术2.2动态规划(DP)的使用2.3贪心算法的使用2.4图论算法模板速记Dijkstra算法Kruskal算法(最小生成树)Floyd算法(多源最短路)2.5分治与归并排序三、常用数学思路3.1数论必
- RSA算法深度解析:从数学基础到安全实践
网安秘谈
算法安全
一、密码学基础与RSA定位在对称加密体系中(如AES),加解密使用相同密钥的特性导致密钥分发成为核心安全问题。RSA作为首个实用的非对称加密算法(1977年由Rivest,Shamir,Adleman提出),通过巧妙的数论构造实现了:公钥加密:任何人可用公钥加密数据私钥解密:只有私钥持有者可解密数字签名:私钥签名可被公钥验证二、核心数学原理2.1模运算基础同余定理:a≡b(modn)当且仅当n|(
- RSA算法深度解析:从数学基础到安全实践
算法
一、密码学基础与RSA定位在对称加密体系中(如AES),加解密使用相同密钥的特性导致密钥分发成为核心安全问题。RSA作为首个实用的非对称加密算法(1977年由Rivest,Shamir,Adleman提出),通过巧妙的数论构造实现了:公钥加密:任何人可用公钥加密数据私钥解密:只有私钥持有者可解密数字签名:私钥签名可被公钥验证二、核心数学原理2.1模运算基础同余定理:a≡b(modn)当且仅当n|(
- 《L1-006连续因子》用贪心策略 +√N 遍历,3 行代码找出最长连续因子序列!
Reese_Cool
洛谷算法c++贪心算法
这种题型的核心难点在于高效因子分解和连续段检测的逻辑处理,需要同时掌握数论和基础算法技巧。在这道题中,我们运用贪心策略(通过双重循环),在因子分解的过程中直接验证连续序列的有效性,避免了存储所有因子的开销。这种设计在保证正确性的前提下,显著提升了效率,尤其适用于大数值的场景。题目:输入样例:630输出样例:1325*6*7【算法思路】本题的目标是找出一个正整数N的最长连续因子序列,并输出其长度和该
- 字符串问题的江湖奇宝:进制哈希
android
江湖中,剑客以快制胜,而算法竞赛里,字符串哈希(StringHashing)便是那柄出招如电的快剑。各种字符串问题纷乱复杂,各种字符串算法招式繁复,需苦练内功心法。但字符串哈希算法却只凭一招:将字符串化作数字,以数论为刃,至简之道斩尽来犯之敌。但此招并非无懈可击。若遇精心构造的数据,它可能一剑刺空,露出破绽。然而,在绝大多数情况,它仍是侠客们最趁手的兵器——七分准,三分险,却快得让人无从招架。m.
- 算法竞赛备赛——【数论】高精度
Aurora_wmroy
算法竞赛备赛算法c++数据结构蓝桥杯
高精度高精度计算,也被称作大整数计算,运用了一些算法结构来支持更大整数间的运算(数字大小超过语言内建整型)。加法P1601A+BProblem(高精)-洛谷#includeusingnamespacestd;constintN=10100;inta[N],b[N],c[N];intinit(intx[]){//读入数返回位数strings;cin>>s;intl=s.size();for(inti
- 数字转换(dp+数论)
小崔的技术博客
算法
题意:如果一个数x的约数之和y(不包括他本身)比他本身小,那么x可以变成y,y也可以变成x。例如,4可以变为3,1可以变为7。限定所有数字变换在不超过n的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。思路:可以将每个数与能到达的数之间连一条边,这样就会形成一个森林,而题目要求的就是在森林中找一棵树的最大直径。问题转换为求树的最大直径:第一步:用筛法的变形求每个数的约数之和第二
- 基础算法--欧拉函数
不会搬砖的淡水鱼
基础算法算法java数据结构
欧拉函数(Euler’stotientfunction),也称为费马函数,是一个与正整数相关的数论函数,用符号φ(n)表示。欧拉函数φ(n)定义为小于或等于n的正整数中与n互质的数的个数。RSA加密算法(Rivest-Shamir-Adleman)就是通过欧拉函数进行公钥加密。具体而言,对于给定的正整数n,欧拉函数φ(n)计算满足以下条件的k的个数:1≤k≤n,且k与n互质(即k和n的最大公约数为
- CSS语言的数论算法
宇瞳月
包罗万象golang开发语言后端
CSS语言的数论算法引言数论作为数学的一个重要分支,主要研究整数及其性质。数论的基本问题包括素数的性质、最大公约数、最小公倍数、同余等,同时数论在密码学、计算机科学等领域具有广泛的应用。而CSS(层叠样式表)本身是一种样式表语言,用于控制HTML文档的样式和布局,虽然CSS本身并不能直接进行复杂的数论运算,但它可以和JavaScript等编程语言结合使用,实现数论算法的可视化与交互。本文将探讨数论
- 小凯的疑惑(数论 )
vir02
算法数据结构c++
#includeusingnamespacestd;typedeflonglongll;intmain(){//请在此输入您的代码lla,b;cin>>a>>b;llN=a*b-a-b;cout<<N;return0;}如果a和b互素,那么a*b-a-b是最大无法被表示的金额
- 论当今的精神状态...(2025.3.14)
VU-zFaith870
日常随笔模拟退火算法
好无聊好烦喏,字符串、线段树、深搜宽搜、DP还有数论...无语。最近OI那边又有西安多校集训的消息,13天的集训,多少是长点。不去是OI的溃败,去了就是whk的惨退。挺纠结,跟家长聊聊吧,大抵是不同意i,我也不打算去,现在OI是有点紧张,但文化成绩别退啊,很难受...我还是习惯在学校安然自得地静心学习,闲暇时放松身心,焦虑时做些心理工作(去找心理老师不错),迷茫时还有身边的一切。因为我眷恋这里..
- CF576A Vasya and Petya‘s Game 题解
W9095
算法学习笔记c++
CF576AVasyaandPetya’sGame数论思维题。根据唯一分解定理,可以知道,如果一个数的各个质因数的数量确定了,这个数也就确定了。每次询问的中,如果xxx是yyy的倍数,证明xxx中含yyy的所有质因数。我们可以枚举质数,判定xxx能否整除这个质数,就可以判断xxx是否含有这个质因数。但是这还不能完全确定xxx,因为这样只能确定是否有某个质因数,而不能确定质因数的数量。为了确定质因数
- leetcode 2024春招冲刺百题计划——动态规划+数论
云深沐子兮
leetcode算法
不打算充钱第一次用java写,有点不熟悉。。。还是用c+stl爽。没写完,不定期更新。在忙八股,先发出来吧,万一有人需要呢先更数论和动态规划目录动态规划篇数论篇动态规划篇70.爬楼梯一眼斐波那契数列。想更进一步可以找一下矩阵写法。classSolution{publicintclimbStairs(intn){if(n==1)return1;elseif(n==2)return2;intsum=0
- 数论-1智乃的数字
幽影欧门
数论c++牛客
链接:登录—专业IT笔试面试备考平台_牛客网题目描述如果一个奇数满足以下两个条件之一:以555结尾各个数位相加的和是333的倍数则称它是一个"智数"前555个"智数"分别为{3,5,9,15,21}\{3,5,9,15,21\}{3,5,9,15,21}现在智乃想要你给升序排序第kkk个"智数"输入描述:第一行输入一个正整数T(1≤T≤105)T(1\leqT\leq10^5)T(1≤T≤105)
- 素数筛介绍,C++实现
非德77
c++算法开发语言密码学
一、素数在数学的奇妙世界里,素数是一个独特而又基础的概念。素数,也被称为质数,是指在大于1的自然数中,除了1和它自身外,不能被其他自然数整除的数。例如,2、3、5、7、11等都是素数,而4(能被2整除)、6(能被2和3整除)等则不是。素数在数学领域中具有举足轻重的地位,是数论等众多数学分支的核心研究对象。在计算机科学领域,素数也有着广泛的应用,比如在密码学中,RSA加密算法就依赖于大素数的性质来保
- 算法竞赛备赛——【数论】快速幂
Aurora_wmroy
算法竞赛备赛算法c++数据结构蓝桥杯
快速幂计算a的b次方时间复杂度:O(logb)#includeusingnamespacestd;constintN=1e5+9;usingll=longlong;#definemod998244353llksm(lla,llb){llres=1;//a=2b=13--1101while(b){//res=2a=2^2b=6//体现倍增思想if(b&1)res=res*a%mod;//res=2a
- php 常用bc函数
任性不起来了
phpbc函数
bcadd—加法,2个任意精度数字的加法计算bcsub—减法bcmul—乘法bcdiv—除法bcpow—乘方bcmod—取模bcsqrt—求二次方根bccomp—比较两个任意精度的数字,返回一个整数的结果:若两数相等返回0,左数大返回1,否则返回-1bcpowmod—求高精度数字乘方求模,数论里非常常用bcscale—设置所有bc数学函数的默认小数点保留位数—比较两个高精度数字,返回-1,0,1
- 【算法学习之路】4.简单数论(4)
零零时
算法学习之路算法学习c++开发语言数据结构数学高精度
简单数论(4)前言三.高精度1.什么是高精度2.解决办法精度乘除法一.精度乘法1.数据的存储2.步骤3.例题:高精度乘法二.精度除法1.例子2.步骤3.例题:高精度除法前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,滑动窗口的题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!三.高精度1.什么是高精度对运
- 欧拉定理
GocNeverGiveUp
数论基础
今天上午近代史和英语又看了看数论,看到了这个费马-欧拉定理,之前还真没见过,只是知道欧拉函数打表欧拉函数φ欧拉定理是用来阐述素数模下,指数同余的性质。欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)例如φ(8)=4,因为与8互质且小于等于8的正整数有4个,它们是:1,3,5,7欧拉定理还有几个引理,具体如下:①:如果n为某一个素数p,则φ(p)=p-1;①很好证明:因为素数
- 【数论 二分查找】P7588 双重素数(2021 CoE-II A)|普及
闻缺陷则喜何志丹
#洛谷普及算法c++洛谷数学二分查找数论位和
本文涉及的基础知识点C++二分查找数论:质数、最大公约数、菲蜀定理双重素数(2021CoE-IIA)题目描述素数(质数)是指在大于111的自然数中,除了111和它本身以外不再有其他因数的自然数。定义双重素数为这样的素数:它的各位数字之和也是一个素数。给定一个闭区间,试确定在该区间内双重素数的个数。输入格式输入包含多组测试数据。输入第一行包含一个整数TTT,表示测试数据的组数。接下来每行一组测试数据
- 【算法】初等数论
非 白
算法开发语言java
初等数论模取余,遵循尽可能让商向0靠近的原则,结果的正负和左操作数相同取模,遵循尽可能让商向负无穷靠近的原则,结果的正负和右操作数相同7/(-3)=-2.3,产生了两个商-2和-3,取余语言中取-2,导致余数为1;取模语言中取-3,导致余数为-2java中%是取余幂1、暴力幂思想:直接将a连续乘以b遍时间复杂度:O(n)空间复杂度:O(1)//求a^bpubliclongpow(inta,intb
- python | math --- 数学函数
黄佳俊、
Pythonpython
这些函数不适用于复数;如果你需要计算复数,请使用cmath模块中的同名函数。常用数论与表示函数math.ceil(x)返回x的上限,即大于或者等于x的最小整数。如果x不是一个浮点数,则委托x.__ceil__(),返回一个Integral类的值。math.fabs(x)返回x的绝对值。math.factorial(x)以一个整数返回x的阶乘。如果x不是整数或为负数时则将引发ValueError。3
- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1