智能指针两大特性:
1.构造栈对象的生命期控制堆上构造的对象的生命期
2.通过release来保证auto_ptr对对象的独权.
另必须使用显示构造
文章结构:
1.Do you Smart Pointer?
2.std::auto_ptr的设计原理
3.std::auto_ptr高级使用指南
4.你是否觉得std::auto_ptr还不够完美?
---------------------------------------------------------------------
SmartPointer,中文名:智能指针, 舶来品?
不可否认,资源泄露(resourceleak)曾经是C++程序的一大噩梦.垃圾回收机制(Garbage Collection)一时颇受注目.然而垃圾自动回收机制并不能满足内存管理的即时性和可视性,往往使高傲的程序设计者感到不自在.
况且,C++实现没有引入这种机制.在探索中,C++程序员创造了锋利的
"Smart Pointer".一定程度上,解决了资源泄露问题.
也许,经常的,你会写这样的代码:
//x拟为class:
class x
{
public:
intm_nData;
public:
x(intnData): m_nData(nData){}
voidprint(){ cout<< m_nData <<endl; }
.....
};
void Fun()
{
x* px = new x(10);
px->DoSomething(); //#2
…//处理
delete px;
}
是的,这里可能没什么问题。可在比较复杂的环境中,px所指对象生命周期要求较长的情况下,你能保证你不会忘记deletepx吗?
生活中,我们往往不应该有太多的口头保证,我们需要做些真正有用的东西.还有一个更敏感的问题:异常.假如在#2方法执行期异常发生,函数执行终止,那么new出的对象就会泄露.于是,你可能会说:那么就捕获异常来保证安全性好了.
你写这样的程式:
void Fun(){
x* px = new x(10);
try{
px->DoSomething();
}
catch(…){
delete px;
throw;
}
delete px;
}
哦!天哪!想象一下,你的系统,是否会象专为捕获异常而设计的.
一天,有人给你建议:"用Smart Pointer,那很安全.".你可以这样重写你的程序:
void Fun()
{
auto_ptr<x> ptrx(new x(10));
m_SMPTRx->DoSomething();
}
OK!你不太相信.不用delete吗?
是的.不用整天提心吊胆的问自己:"我全部delete了吗?",而且比你的delete策略更安全.
然后,还有人告诉你,可以这样用呢:
ok1.
auto_ptr<x> ptrx1(new x(10));
auto_ptr<x> ptrx2(ptrx1);//#2
May be you can code #2 like this :
auto_ptr<x> ptrx2;
ptrx2 = ptrx1;
ok2.
auto_ptr<int> ptr2(new int(32));
ok3.
auto_ptr<int> ptr3;
ptr3 = auto_ptr<int>(new int(100));
也可以:
auto_ptr<int> ptr3(auto_ptr<int>(newint(100)));
ok4.
auto_ptr<x> ptr4(new x(10));
ptr4.reset(new x(20));
ok5.
auto_ptr<x> ptr5(new x(10));
auto_ptr<x> ptr6(ptr5.release());
cout<<(*ptr6).m_nData<<endl;
ok6.
auto_ptr<int> Fun()
{
returnauto_ptr<int>(new int(100));
}
ok7.............and so on
但不可这样用:
no1.
char* chrarray = new char[100];
strcpy(chrarray,"I am programming.");
auto_ptr<char*>ptr1(chrarray);
//auto_ptr并不可帮你管理数组资源
no2.
vector<auto_ptr<x>> vec;
vec.push_back(auto_ptr<int>(newint(100)));
//auto_ptr并不适合STL内容.
no3.
const auto_ptr<x> ptr3(new x(100));//所有权问题,不能用const类型
auto_ptr<x> ptr4(new x(200));
no4.
x OBJx(300);
auto_ptr<x> ptr3(&OBJx);//不支持栈资源的释放,因为析构中用的是delete
no5
x* ptr5 = new x(100);
auto_ptr<x> SMPTR = ptr5;//禁止隐式转换
no6..........and so on
预先提及所有权的问题,以便下面带着疑问剖析代码?
power1.
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
power2.
auto_ptr<x> m_SMPTR(new x(100));
auto_ptr<x> returnfun(auto_ptr<x>m_SMPTRin){
return m_SMPTRin;
}
auto_ptr<x> = returnfun(m_SMPTR); //#5
//在上面的#5中,我要告诉你对象所有权转移了两次.
//什么叫对象所有权呢?
b.所有权转移之说
上面曾有一非法的程式片段如下:
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
按常理来说,m_SMPTR->print();怎么是非法的呢?
那是因为本来,m_SMPTR1维护指向new x(100)的指针,可是m_SMPTR2 =m_SMPTR1;auto_ptr内部机制使得m_SMPTR1将对象的地址传给m_SMPTR2,而将自己的对象指针置为0.那么自然m_SMPTR->print();失败.
这里程序设计者要负明显的职责的.
那么auto_ptr为什么采取这样的策略:保证所有权的单一性.亦保证了系统安全性.
如果多个有全权的auto_ptr维护一个对象,那么在你消除一个auto_ptr时,将导致多个auto_ptr的潜在危险.
下面我们以SGI-STL的auto_ptr设计为样本(去掉了无关分析的宏),来剖析其原理.
#1 template <class _Tp> classauto_ptr {
#2 private:
#3 _Tp* _M_ptr; //定义将维护堆对象的指针
#4 public:
#5 typedef _Tp element_type; //相关类型定义
#6 explicit auto_ptr(_Tp* __p = 0)__STL_NOTHROW : _M_ptr(__p) {}
#7 auto_ptr(auto_ptr& __a)__STL_NOTHROW : _M_ptr(__a.release()) {}
#8 template <class _Tp1>auto_ptr(auto_ptr<_Tp1>& __a) __STL_NOTHROW
: _M_ptr(__a.release()) {}
//#6、#7、#8是auto_ptr构造函数的三个版本.
//#6注释:传入对象的指针,构造auto_ptr.explicit关键字:禁止隐式转换.
// 这就是ok2正确,而no5(隐式转换)错误的原因.
//#7注释:拷贝构造函数.
// 传入auto_ptr实例,构造auto_ptr.ok1、ok3使用了这个构造式.
// 它是一个很关键的构造函数,在具体情况下,我们再分析
//#8注释:auto_ptr的模板成员,可在继承对象重载的基础上,实现特殊功能.
//
// 举例:
// class A{ public:
// virtual voidfook(){cout<<"I am programming"<<endl;
// /*..........*/ };
// class B : public A {
// virtual void fook(){cout<<"I am working"<<endl;
// /*...........*/ };
// auto_ptr<A> m_SMPTRa(new A(33));//实质:
// auto_ptr<B> m_SMPTRb(m_SMPTRa); //基类的指针可以赋给派生类的指针
//
// auto_ptr<B> m_SMPTRb(new B(44));//实质:
// auto_ptr<A> m_SMPTRa(m_SMPTRb); //派生类的指针不可赋给基类的指针
//
// auto_ptr<A> m_SMPTRa(new B(33)); // ok!
// m_SMPTRa->fook()将调用派生类B的fook()
// m_SMPTRa->A::fook()将调用基类A的fook()
//
// auto_ptr<B> m_SMPTRb(new A(33)); // wrong!
//
//
#9 auto_ptr&operator=(auto_ptr& __a) __STL_NOTHROW {
#10 if (&__a != this) { delete_M_ptr; _M_ptr = __a.release(); }
#11 return *this;
#12 }
#13 template <class _Tp1>
#14 auto_ptr&operator=(auto_ptr<_Tp1>& __a) __STL_NOTHROW {
#15 if (__a.get() != this->get()) {delete _M_ptr; _M_ptr = __a.release(); }
#16 return *this;
#16 }
//
// #9~~#16 两个版本的指派函数.
// delete _M_ptr; 在指派前,销毁原维护的对象.
// _a.release() ; release操作,详细代码参见#20~~#23.
// 用于*this获得被指派对象,
// 且将原维护auto_ptr置空.
// no3使用了第一种指派.
// 而权限转移正是_a.release()的结果.
#17 ~auto_ptr() __STL_NOTHROW { delete_M_ptr; }
//构析函数.消除对象.注意这里对对象的要求!
#17 _Tp& operator*() const__STL_NOTHROW { return *_M_ptr; }
#18 _Tp* operator->() const__STL_NOTHROW { return _M_ptr; }
#19 _Tp* get() const __STL_NOTHROW {return _M_ptr; }
//
// 操作符重载.
// #17注释:提领操作(dereference),获得对象. 见ok5用法.
// #18注释:成员运算符重载,返回对象指针.
// #19注释:普通成员函数.作用同于重载->运算符
//
#20 _Tp* release() __STL_NOTHROW {
#21 _Tp* __tmp = _M_ptr;
#22 _M_ptr = 0;
#23 return__tmp; }
//上面已经详解
#24 void reset(_Tp* __p = 0) __STL_NOTHROW{
#25 delete _M_ptr;
#26 _M_ptr =__p; }
//
//传入对象指针,改变auto_ptr维护的对象
// 且迫使auto_ptr消除原来维护的对象
// 见ok3用法.
// According to the C++ standard, these conversions are required. Most
// present-day compilers,however, do not enforce that requirement---and,
// in fact, most present-daycompilers do not support the language
// features that theseconversions rely on.
//下面这片段用于类型转化,目前没有任何编译器支持
//具体技术细节不诉.
#ifdef __SGI_STL_USE_AUTO_PTR_CONVERSIONS
#27 private:
#28 template<class _Tp1>
#29 struct auto_ptr_ref { _Tp1* _M_ptr;auto_ptr_ref(_Tp1* __p) : _M_ptr(__p) {}
};
#30 public:
#31 auto_ptr(auto_ptr_ref<_Tp> __ref)__STL_NOTHROW
: _M_ptr(__ref._M_ptr) {}
#32 template <class _Tp1>
#33 operator auto_ptr_ref<_Tp1>()__STL_NOTHROW
#34 { returnauto_ptr_ref<_Tp>(this->release()); }
#35 template <class _Tp1> operatorauto_ptr<_Tp1>() __STL_NOTHROW
#36 { returnauto_ptr<_Tp1>(this->release()); }
#37 #endif /* __SGI_STL_USE_AUTO_PTR_CONVERSIONS*/
#38 };
OK!就是这样了.
正如上面原理介绍处叙说,
你需要正视两大特性:
1.构造栈对象的生命期控制堆上构造的对象的生命期
2.通过release来保证auto_ptr对对象的独权.
在我们对源码分析的基础上,重点看看:
no系列错误在何处?
no1.
我们看到构析函数template<class _Tp>
~auto_ptr() _STL_NOTHROW
{ delete _M_ptr; }
所以它不能维护数组,
维护数组需要操作:delete[] _M_ptr;
no2.
先提部分vector和auto_ptr代码:
a.提auto_ptr代码
auto_ptr(auto_ptr& __a)__STL_NOTHROW : _M_ptr(__a.release()) {}
b.提vector代码
Part1:
void push_back(const_Tp& __x) {
if (_M_finish !=_M_end_of_storage) {
construct(_M_finish,__x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
Part2:
template <class _T1, class_T2>
inline void construct(_T1*__p,
//++++++++++++++++++++++++++++++++
// const _T2& __value) { +
//++++++++++++++++++++++++++++++++
// new (__p)_T1(__value); +
//++++++++++++++++++++++++++++++++
}
Part3.
template <class _Tp, class_Alloc>
void
vector<_Tp,_Alloc>::_M_insert_aux
(iterator __position,
//++++++++++++++++++++++++++++++++
// const _Tp&__x) ++
//++++++++++++++++++++++++++++++++
{
if (_M_finish !=_M_end_of_storage) {
construct(_M_finish,*(_M_finish - 1));
++_M_finish;
//++++++++++++++++++++++++++++++++
// _Tp__x_copy = __x; +
//++++++++++++++++++++++++++++++++
copy_backward(__position, _M_finish - 2, _M_finish - 1);
*__position = __x_copy;
}
else {
const size_type __old_size =size();
const size_type __len =__old_size != 0 ? 2 * __old_size : 1;
iterator __new_start =_M_allocate(__len);
iterator __new_finish =__new_start;
__STL_TRY {
__new_finish =uninitialized_copy
(_M_start, __position,__new_start);
construct(__new_finish, __x);
++__new_finish;
__new_finish =uninitialized_copy
(__position, _M_finish,__new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage- _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
从提取的vector代码,Part1可看出,push_back的操作行为.
兵分两路,可是再向下看,你会发现,无一例外,都
通过const _Tp& 进行拷贝行为,那么从auto_ptr提出的片段就
派上用场了.
可你知道的,auto_ptr总是坚持对对象的独权.那必须修改
原来维护的对象,而vector行为要求const _Tp&,这样自然会产生
问题.一般编译器是可以发觉这种错误的.
其实,STL所有的容器类都采用const _Tp&策略.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 看了sutter和Josuttis的两篇文章中,都提及: +
+ STL容器不支持auto_ptr原因在于copy的对象只是获得所有权的对象,+
+ 这种对象不符合STL的要求.可是本人总感觉即时不是真正的复制对象,+
+ 但我用vector<auto_ptr<x> >的目的就在于维护对象,并不在乎 +
+ 所谓的完全对象.而且我用自己写的SmartPointer配合STL容器工作, +
+ 很正常.那需要注意的仅仅是const问题. +
+ +
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
no3.
这个也是auto_ptr隐含的所有权问题引起的.
const auto_ptr不允许修改.
随便提及:const对象不代表对象一点不可以改变.
在两种const语义下,都有方法修改对象或对象内部指针维护的对象
或其它资源.
no4.
再看auto_ptr的构析函数.
delete不可以消除栈上资源.
no5.
依赖传入对象指针的构造函数被声明为explicit,禁止隐式转换.
处于对构建于堆中的对象(new Structx)智能维护的需要.
我们将programme1改造为programme2:
不错,对象是可以智能维护了.
对于包裹类(StructWrapper)你是否会有这样的构造或指派操作:
StructWrapperm_SMPTRWrapper2(m_SMPTRWrapper1);
StructWrapper mSMPTRWrapper2 =m_SMPTRWrapper1;
那么请注意:
当你坦然的来一个:M_SMPTRWrapper1->Soperator1();的时候,
系统崩溃了.
不必惊讶,所有权还是所有权问题.
问一下自己:当programme2默认拷贝构造函数作用时,又调用了auto_ptr的
默认构造函数,那么auto_ptr所有的默认行为都遵循独权策略.对,就这样.
m_SMPTRWrapper1的对象所有权转移给了m_SMPTRWrapper2.
M_SMPTRWrapper1->Soperator1();那么操作变成了在NULL上的.
哦!系统不崩溃才怪.
那么你需要想,programme3那样利用auto_ptr的提领操作符自己的
构造"完全对象".
b.利用const关键字,防止不经意的权限转移
从上面的叙述,你可看出,所有权转移到处可以酿成大祸.
而对于一般应用来说,独权又是很好的安全性策略.
那么我们就用const来修饰auto_ptr,禁止不经意的错误.
当然上面提及:并不代表auto_ptr是不可修改的.
处于需要,从两种const语义,你都可实现修改.
然,你还希望在函数传入传出auto_ptr那么你可传递auto_ptr的引用,
那就万无一失了: void fook(const auto_ptr<x>& m_PARAMin);
在返回后赋予其它时,使用引用是不行的.你得用指针.
因为引用无论作为lvalue还是rvaluev,都会调用构造或指派函数.
下面在需求层面上,我们思索一下我们的智能指针还需要些什么?
a. std::auto_ptr 能够处理数组吗?我们可以用智能指针来管理其它的资源吗?
譬如一个线程句柄、一个文件句柄 and so on !
b. 对于我们的对象真的永远实行独权政策吗?
c. Our 智能指针还需要在继承和虚拟层面上发挥威力 !
d. 往往,需要扩展Our 智能指针的功能成员函数来满足动态的需要 !
e. 也许,你需要的还很多.
智能指针std::auto_ptr 和 shared_ptr
auto_ptr 类可以用于管理由 new 分配的单个对象,但是无法管理动态分配的数组(我们通常不会使用数组,而是使用 vector 代替数组)。auto_ptr 在拷贝和赋值的时候有不寻常的行为,因此 auto_ptrs 不能被保存在 stl 的容器中。当 auto_ptr 离开了自己的作用域或者被销毁,由 auto_ptr 管理的对象也会被销毁。
使用std::auto_ptr需要的头文件: #include <memory>
// 示例 1(b): 安全代码, 使用了auto_ptr
void f()
{
auto_ptr<T> pt( new T );
.....
} // 酷: 当pt出了作用域时析构函数被调用,从而对象被自动删除
现在代码不会泄漏T类型的对象,不管这个函数是正常退出还是抛出了异常,因为pt的析构函数总是会在出栈时被调用。清理会自动进行。
最后,使用一个auto_ptr就像使用一个内建的指针一样容易,而且如果想要“撤销”资源,重新采用手动的所有权,我们只要调用release().
// 示例 2: 使用一个 auto_ptr
void g()
{
T* pt1 = new T; // 现在,我们有了一个分配好的对象
auto_ptr<T> auto_pt2( pt1 ); // 将所有权传给了一个auto_ptr对象,auto_pt2 指向了 pt1
// 使用auto_ptr就像我们以前使用简单指针一样
auto_pt2 = 12; // 就像"*pt1 = 12;"
auto_pt2->SomeFunc(); // 就像 "pt1->SomeFunc();"
// 用get()来获得指针的值
assert( pt1 == auto_pt2.get() ); // 二者一样
// 用release()来撤销所有权, auto_pt2 把保存的指针地址给了pt3, 而自己指向了NUll。
T* pt3 = auto_pt2.release(); //
// 自己删除这个对象,因为现在没有任何auto_ptr拥有这个对象
delete pt3;
} // pt2不再拥有任何指针,所以不要试图删除它...ok,不要重复删除
最后,我们可以使用auto_ptr的reset()函数来重置auto_ptr使之拥有另一个对象。如果这个auto_ptr已 经拥有了一个对象,那么,它会先删除已经拥有的对象,因此调用reset()就如同销毁这个auto_ptr,然后新建一个并拥有一个新对象:
// 示例 3: 使用reset()
//
void h()
{
auto_ptr<T> pt( new T(1) );
pt.reset( new T(2) ); //即pt会首先delete pt目前指向的地址(new T(1)得到的地址),
//然后再指向new T(2)分配的地址
} // 最后,pt出了作用域,
// 第二个T也被自动删除了