EOJ 1708 Connected Gheeves
1
/**/
/*
2
EOJ 1708 Connected Gheeves
3![]()
4![]()
5
----问题描述:
6![]()
7
Gheeves (plural of gheef) are some objects similar to funnels. We define a gheef as a two dimensional object specified by a sequence of points (p1, p2,
, pn) with the following conditions:
8![]()
9
1. 3 ≤ n ≤ 1000
10
2. If a point pi is specified by the coordinates (xi, yi), there is an index 1 < c < n such that y1 > y2 >
> yc and yc < yc+1 < yc+2 <
< yn. pc is called the cusp of the gheef.
11
3. For all 1 ≤ i < c, xi < xc and for all c < i ≤ n, xi > xc.
12
4. For 1 < i < c, the amount of rotation required to rotate pi-1 around pi in clockwise direction to become co-linear with pi and pi+1, is greater than 180 degrees. Likewise, for c < i < n, the amount of rotation required to rotate pi-1 around pi in clockwise rotation to become co-linear with pi and pi+1, is greater than 180 degrees.
13
5. The set of segments joining two consecutive points of the sequence intersect only in their endpoints.
14![]()
15
We call the sequence of segments (p1p2, p2p3,
, pn-1pn), the body of the gheef. In this problem, we are given two gheeves P = (p1, p2,
, pn) and Q = (q1, q2,
, qm), such that all x coordinates of pi are negative integers and all x coordinates of qi are positive integers. Assuming the cusps of the two gheeves are connected with a narrow pipe, we pour a certain amount of water inside the gheeves. As we pour water, the gheeves are filled upwards according to known physical laws (the level of water in two gheeves remains the same). Note that in the gheef P, if the level of water reaches min(y1, yn), the water pours out of the gheef (the same is true for the gheef Q). Your program must determine the level of water in the two gheeves after pouring a certain amount of water. Since we have defined our problem in two dimensions, the amount of water is measured in terms of area it fills. Note that the volume of pipe connecting cusps is considered as zero.
16![]()
17![]()
18
----输入:
19![]()
20
The first number in the input line, t is the number of test cases. Each test case is specified on three lines of input. The first line contains a single integer a (1 ≤ a ≤ 100000) which specifies the amount of water poured into two gheeves. The next two lines specify the two gheeves P and Q respectively, each of the form k x1 y1 x2 y2
xk yk where k is the number of points in the gheef (n for P and m for Q), and the xi yi sequence specify the coordinates of the points in the sequences.
21![]()
22![]()
23
----输出:
24![]()
25
The output contains t lines, each corresponding to an input test case in that order. The output line contains a single integer L indicating the final level of water, expressed in terms of y coordinates rounded to three digits after decimal points.
26![]()
27![]()
28
----样例输入:
29![]()
30
2
31
25
32
3 -30 10 -20 0 -10 10
33
3 10 10 20 0 30 10
34
25
35
3 -30 -10 -20 -20 -10 -10
36
3 10 10 20 0 30 10
37![]()
38![]()
39
----样例输出:
40![]()
41
3.536
42
-15.000
43![]()
44![]()
45
----分析:
46![]()
47
二分答案,计算面积。
48![]()
49
*/
50![]()
51![]()
52
#include
<
iostream
>
53
#include
<
cstdio
>
54
#include
<
cmath
>
55
#include
<
iomanip
>
56
#include
<
algorithm
>
57![]()
58
using
namespace
std;
59![]()
60![]()
61
template
<
class
T, unsigned
int
N
>
62
class
Con
63![]()
{
64
public :
65![]()
void input()
{
66
int i;
67
cin >> this->n;
68![]()
for ( i = 0; i < this->n; ++i )
{
69
cin >> this->x[ i ] >> this->y[ i ];
70
}
71
this->top = min( this->y[ 0 ], this->y[ n - 1 ] );
72![]()
for ( i = 1; (i < this->n) && (this->y[ i - 1 ] > this->y[ i ]); ++i )
{
73
}
74
this->c = i - 1;
75
this->bottom = this->y[ this->c ];
76
}
77![]()
78![]()
double cross( double x0, double y0, double x1, double y1 ) const
{
79
return x0 * y1 - x1 * y0;
80
}
81![]()
82![]()
double area( double level ) const
{
83![]()
if ( this->bottom >= level )
{
84
return 0;
85
}
86![]()
if ( this->top <= level )
{
87
level = this->top;
88
}
89
double yn = level;
90
int i;
91![]()
92![]()
for ( i = 1; (i <= this->c) && (this->y[ i ] >= yn); ++i )
{
93
}
94
int lei = i;
95
double le = (this->y[ i-1 ] - yn) * (this->x[ i ] - this->x[ i-1 ]) /
96
(this->y[ i-1 ] - this->y[ i ]) + this->x[ i-1 ];
97![]()
98![]()
for ( i = this->c + 1; (i < this->n) && (this->y[ i ] < yn); ++i )
{
99
}
100
int rii = i - 1;
101
double ri = this->x[ i ] -
102
(this->y[ i ] - yn) * (this->x[ i ] - this->x[ i-1 ]) /
103
(this->y[ i ] - this->y[ i-1 ]);
104![]()
105
double area2 = 0;
106![]()
for ( i = lei; i < this->c; ++i )
{
107
area2 += cross( this->x[ i+1 ] - le, this->y[ i+1 ] - yn,
108
this->x[ i ] - le, this->y[ i ] - yn );
109
}
110![]()
for ( i = rii; i > this->c; --i )
{
111
area2 += cross( this->x[ i ] - ri, this->y[ i ] - yn,
112
this->x[ i-1 ] - ri, this->y[ i-1 ] - yn );
113
}
114
return ( (ri - le) * (yn - this->bottom) - area2 ) / 2;
115
}
116![]()
117![]()
T getBottom() const
{
118
return this->bottom;
119
}
120![]()
T getTop() const
{
121
return this->top;
122
}
123![]()
124
private :
125
int n, c;
126
T x[ N ], y[ N ], bottom, top;
127
}
;
128![]()
129![]()
130
const
int
N
=
1009
;
131
const
double
EPS
=
0.0001
;
132![]()
133
Con
<
int
, N
>
p, q;
134
int
a;
135![]()
136![]()
double
solve()
{
137
double hig = min( p.getTop(), q.getTop() );
138
double low = min( p.getBottom(), q.getBottom() );
139
double mid;
140![]()
while ( hig - low > EPS )
{
141
mid = (hig + low) / 2;
142![]()
if ( p.area(mid) + q.area(mid) < a )
{
143
low = mid;
144
}
145![]()
else
{
146
hig = mid;
147
}
148
}
149
return hig;
150
}
151![]()
152![]()
int
main()
{
153
int t;
154
cin >> t;
155![]()
while ( 0 < t-- )
{
156
cin >> a;
157
p.input();
158
q.input();
159
cout << fixed << setprecision(3) << solve() << endl;
160
}
161
return 0;
162
}
163
2
3
4
5
6
7

8
9
10


11
12
13
14
15



16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67
68

69
70
71
72

73
74
75
76
77
78

79
80
81
82

83

84
85
86

87
88
89
90
91
92

93
94
95
96
97
98

99
100
101
102
103
104
105
106

107
108
109
110

111
112
113
114
115
116
117

118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140

141
142

143
144
145

146
147
148
149
150
151
152

153
154
155

156
157
158
159
160
161
162
163