- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 基于Hadoop的海量图像检索
usp1994
hadoopeclipse大数据
基于Hadoop的海量图像检索“MassiveImageRetrievalBasedonHadoop:AStudyinSoftwareEngineering”完整下载链接:基于Hadoop的海量图像检索文章目录基于Hadoop的海量图像检索摘要第一章引言1.1研究背景1.2研究意义1.3国内外研究现状1.4研究内容与方法1.5论文结构第二章相关技术介绍2.1Hadoop框架2.2分布式存储与计算2
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 快速计算距离Annoy算法原理及Python使用
召唤师的峡谷
机器学习算法
快速计算距离Annoy算法基本原理高维稀疏数据进行快速相似查找,可以采用learningtohash参考:Minhashing&LSH&Simhash技术汇总,但高维稠密数据查找则采用annoy如何从海量文本中快速查找出相似的TopN文本Annoy(ApproximateNearestNeighborsOhYeah)快速算法,在实际应用中发现无论计算速度和准确性都非常不错。原始2D数据分布图:1.
- 海量数据相似数据查找方法(ANN):【高维稀疏向量的相似查找——MinHash, LSH, SimHash】【稠密向量的相似查找——Faiss、Annoy、ScaNN、Hnswlib】
u013250861
#RS/召回层#LLM/数据处理算法
主要分为高维稀疏向量和稠密向量两大方向。高维稀疏向量的相似查找——minhash,lsh,simhash针对高维稀疏数据情况,如何通过哈希技术进行快速进行相似查找。例如,推荐系统中item-user矩阵。如果你有item数量是百万级别,user是千万级别,这个矩阵是十分稀疏的。你如何计算每一个item的TopN相似item呢?同样海量文本场景,文本集合可以看成doc-word稀疏矩阵,如何求解每个
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 哈工大SCIR | 场景图生成简述
zenRRan
人工智能计算机视觉知识图谱
原创作者:梁家锋郑子豪王禹鑫孙一恒刘铭出处:哈工大SCIR进NLP群—>加入NLP交流群1引言场景图是一种结构表示,它将图片中的对象表示为节点,并将它们的关系表示为边。最近,场景图已成功应用于不同的视觉任务,例如图像检索[3]、目标检测、语义分割、图像合成[4]和高级视觉-语言任务(如图像字幕[1]或视觉问答[2]等)。它是一种具有丰富信息量的整体场景理解方法,可以连接视觉和自然语言领域之间巨大差
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- Vue项目 封装Element-ui中的el-pagination作为公用分页组件
小刘爱搬砖
Vuevue.jsjavascriptui
原文链接:https://www.cnblogs.com/lsh-admin/p/16071060.html原因:分页在项目当中使用非常频繁,因此就将el-pagination封装为了一个全局组件1.首先在components下面新建一个pagination.vue文件import{scrollTo}from'@/utils/scroll-to'exportdefault{name:'Pagina
- 【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
沐风—云端行者
深度学习实验支持向量机人工智能算法机器视觉计算机视觉机器学习图像识别
一、实验内容实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。(1)编程实现基于knn的场景图像检索a)至少实现三种特征组合进行检索;b)使用recall与precision分析不同特征组合对检索精度的影响。(2)实现基于SVM的人脸图像识别a)准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b)训练SVM人脸分类器c)实现基于滑动窗口的人脸检测算法;d)识别出
- 计算机设计大赛 图像检索算法
iuerfee
python
文章目录1前言2图像检索介绍(1)无监督图像检索(2)有监督图像检索3图像检索步骤4应用实例5最后1前言优质竞赛项目系列,今天要分享的是图像检索算法该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时代,随着各种社
- 向量数据库(1)
Aring88
人工智能向量数据库人工智能数据库python
一、向量数据库1,什么是向量数据库专门存储和查询向量数据的数据库系统,通过高翔的向量索引和查询功能,使得在大规模向量数据集上进行相似性搜索和分析变得更高效和容易。存储向量数据:处理百万或者十亿的大规模数据集向量索引:使用特殊索引结构,如KD-Tree,LSH(局部敏感哈希),HNSW(高纬空间网络)常用。加速向量的相似性搜索。能高效与查询相似的想来根相似性搜索:根据查询的向量相似来搜索、检索最相关
- 2024年,AIGC赛道专利文献和软著大全
AI周红伟
AIGC人工智能机器学习chatgpt
一、周红伟-深度学习国际发明专利深度学习国际发明专利基于深度学习的图像检索方法及装置,专利公开公告号:CN107368614A。专利类型:发明公布。发明人:周红伟;李凯;任伟;李庆;郭奇杰;周杨;刘川郁二、机器学习算法发表文献Simulationmodelanddropletejectionperformanceofathermal-bubblemicroejector,HongweiZhou,A
- Linux查询内存占用情况以及服务器内大文件
liaozk_c
日常工作总结linux运维服务器
内存占用率free-m查看硬盘空间大小df-lh显示大于100MiB(注意不是100MB,MiB和MB的区别)的所有文件find/-size+100M-ls查看根目录占用大小du-sh/*2>dev.null|sort-hr|head-3列出/bin目录中的5个最大文件ls-lSh/bin|head-5查找/目录下最大的一个文件sudofind/-typef-printf“%s\t%p\n”|so
- 局部敏感哈希LSH
囧囧侠道
LSH局部敏感哈希问题场景:快速的从海量高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据局部敏感:指样本越相似,经过哈希后的值越可能一样。通过建立HashTable的方式,我们期望能够获得O(1)的查找时间性能,其中的关键在于选取一个hashfunction,将原始数据映射到对应的桶内(bucket)。以下以jacarrd距离为度量(对应的哈希函数为minhash)。简要介绍LS
- 探索图像检索:从理论到实战的应用
TechLead KrisChang
机器学习深度学习人工智能
目录一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术三、图像检索技术代码示例图像特征提取示例相似度计算索引技术四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化五、实际应用图像检索在电子商务领域的应用图像检索在社交媒体中的应用图像检索在云存储服务中的应用本文深入探讨了图像检索技术及其在主流APP中的应用,涵盖了特征提取、相
- 【GitHub项目推荐--全球首个开源图像识别系统】【转载】
旅之灵夫
GitHub项目推荐github
你知道人脸识别、商品识别、车辆识别,以图搜图乃至自动驾驶,背后的技术是什么嘛?并不是图像分类、目标检测这些东西,而是综合使用目标检测、图像分类、度量学习、图像检索的【通用图像识别系统】…度量学习是啥?图像检索是啥?通用图像识别系统又是啥?好奇之余,老逛突然发现了一个通用图像识别系统快速搭建神器!GitHub地址:https://github.com/PaddlePaddle/PaddleClas那
- 基于内容的图像web检索系统
乐心唯帅
计算机视觉深度学习
题目:基于内容的图像在线检索系统简介:基于内容的图像在线检索系统(ContentBasedOnlineImageRetrieval,以下简称CBOIR),是计算机视觉领域中关注大规模数字图像内容检索的研究分支。典型的CBOIR系统,允许用户在线输入一张图像,在远程图像数据库中查找具有相同或相似内容的其它图片。要求:本实训完成的系统要求实现基于视觉特征的在线图像检索。该项目的实训内容主要包括:1.搭
- 半监督学习 - 三元组学习(Triplet Learning)
草明
数据结构与算法学习机器学习人工智能
什么是机器学习三元组学习(TripletLearning)是半监督学习中一种用于学习有用表示的方法。它通常用于学习数据中的相似性关系,尤其在人脸识别、图像检索等领域中得到广泛应用。三元组学习是通过构造三元组(triplet)来训练模型,每个三元组包含一个锚点样本(anchorsample)、一个正样本(positivesample)和一个负样本(negativesample)。三元组的构造锚点样本
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 图像处理中常用的距离
图灵追慕者
图像处理图像处理欧氏距离常用距离距离的类型距离度量
说明在图像处理中,常用的距离度量用于衡量两个向量或特征之间的差异或相似性。以下是一些常用的距离度量及其使用说明和应用场景:欧氏距离(EuclideanDistance):欧氏距离是最常用的距离度量,用于衡量两个向量之间的几何距离。它可以用于图像检索、目标识别和图像聚类等任务。曼哈顿距离(ManhattanDistance):曼哈顿距离是指两个向量之间的每个维度差的绝对值之和。它适用于特征具有明显方
- 无代码DIY图像检索
colorknight
低代码人工智能HuggingFace大模型MilvusEmbedding图像检索
软件环境准备可参见《HuggingFists-低代码玩转LLMRAG-准备篇》中的HuggingFists安装及Milvus安装。流程环境准备图片准备进入HuggingFists内置的文件系统,数据源->文件系统->sengee_fs_settings_201创建Image文件夹将事先准备的多张相同或不同种类的图片上传到Image目录下。如下图:HuggingFace账号准备HuggingFist
- 遥感影像-语义分割数据集:WHDLD数据集详细介绍及训练样本处理流程
ly_0624
语义分割数据集深度学习人工智能图像处理数据分析计算机视觉
原始数据集详情简介:WHDLD是一个密集的标签数据集,可用于多标签任务,例如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,例如语义分割(在遥感中也称为分类)。KeyValue卫星类型GaoFen-1、ZiYuan-3覆盖区域未知场景未知分辨率2m数量4940张单张尺寸256*256原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数单通道标签类别对照表像素值类别名(英文)类
- 灰度共生矩阵纹理特征提取matlab,灰度共生矩阵纹理特征提取的Matlab实现
陆牙
收稿日期:2012-03-20;修回日期:2012-06-24基金项目:国家“十一五”计划课题(FIB070335-B8-04)作者简介:焦蓬蓬(1981-),女,硕士,讲师,研究方向为数字信号处理。灰度共生矩阵纹理特征提取的Matlab实现焦蓬蓬,郭依正,刘丽娟,卫星(南京师范大学泰州学院,江苏泰州225300)摘要:图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的
- 简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet
Leventure_轩先生
不涉及理论的简易机器学习笔记机器学习笔记分类
前言图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。这里简单讲讲LeNet我的推荐是可以看看这个视频,可视化的查看卷积神经网络是如何
- Linux中经常使用的相关命令
图灵追慕者
Linuxlinux服务器复制文件删除文件移动文件
查看硬盘存储容量使用情况: df-lh 列出/bin目录中的5个最大文件:ls-lSh/bin|head-5删除文件和文件夹在Linux中,要删除文件的命令是rm。你可以使用以下命令来删除一个文件:rmfile_name如果要删除多个文件,可以在命令中列出它们的文件名,如:rmfile1file2file3你可以使用以下命令来删除一个空文件夹:rm-dfolder_name如果文件夹中有文件或其他
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不