相关问题1:[LeetCode] Find max subsquare whose border values are all 1
相关问题2:[LeetCode] 01矩阵中最大矩形 Maximal Rectangle
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area. For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
思路:
假设给定是矩阵是 M ,可以构建一个大小一样的辅助矩阵S,具体构建规则如下:
1) Construct a sum matrix S[R][C] for the given M[R][C]. a) Copy first row and first columns as it is from M[][] to S[][] b) For other entries, use following expressions to construct S[][] If M[i][j] is 1 then S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1 Else /*If M[i][j] is 0*/ S[i][j] = 0 2) Find the maximum entry in S[R][C] 3) Using the value and coordinates of maximum entry in S[i], print sub-matrix of M[][]这样一来,S[ i ] [ j ] 就代表了以 M[ i ] [ j ] 为右下角的、最大的、全1 的 正方形的边长。
具体代码如下:
class Solution { public: int maximalSquare(vector<vector<char>>& M) { int R = M.size(); if(R==0) return 0; int C = M[0].size(); if(C==0) return 0; int i,j; vector<vector<int>> S(R, vector<int>(C, 0) ); int max_of_s, max_i, max_j; for(i = 0; i < R; i++) S[i][0] = M[i][0] - '0'; for(j = 0; j < C; j++) S[0][j] = M[0][j] - '0'; for(i = 1; i < R; i++) { for(j = 1; j < C; j++) { if(M[i][j] == '1') S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1; else S[i][j] = 0; } } max_of_s = S[0][0]; max_i = 0; max_j = 0; for(i = 0; i < R; i++) { for(j = 0; j < C; j++) { if(max_of_s < S[i][j]) { max_of_s = S[i][j]; max_i = i; max_j = j; } } } return max_of_s*max_of_s; } /* Function to get minimum of three values */ int min(int a, int b, int c) { int m = a; if (m > b) m = b; if (m > c) m = c; return m; } };