Great artical:http://blog.scottlowe.org/2013/05/15/examining-open-vswitch-traffic-patterns/
In this post, I want to provide some additional insight on how the use of Open vSwitch (OVS) affects—or doesn’t affect, in some cases—how a Linux host directs traffic through physical interfaces,OVS internal interfaces, and OVS bridges. This is something that I had a hard time understanding as I started exploring more advanced OVS configurations, and hopefully the information I share here will be helpful to others.
To help structure this discussion, I’m going to walk through a few different OVS configurations and scenarios. In these scenarios, I’ll use the following assumptions:
In this first scenario let’s look at a relatively simple OVS configuration, and examine how Linux host and guest domain traffic moves into or out of the network.
Let’s assume that our OVS configuration looks something like this (this is the output from ovs-vsctl show
):
This is a pretty simple configuration; there are two bridges, each with a single physical interface. Let’s further assume, for the purposes of this scenario, that eth2 has an IP address and is working properly to communicate with other hosts on the network. The eth3 interface is shutdown.
So, in this scenario, how does traffic move into or out of the host?
Traffic from a guest domain: Traffic from a guest domain willtravel through the OVS bridge to which it is attached (you’d see an additional “vnet0″ port and interface appear on that bridge when you start the guest domain). So, a guest domain attached to br0 would communicate via eth0, and a guest domain attached to br1 would communicate via eth1. No real surprises here.
Traffic from the Linux host: Traffic from the Linux host itself will notcommunicate over any of the configured OVS bridges, but will instead use its native TCP/IP stack and any configured interfaces. Thus, since eth2 is configured and operational, all traffic to/from the Linux host itself will travel through eth2.
The interesting point (to me, at least) about #2 above is that this includes traffic from the OVS process itself. In other words, if the OVS process(es) need to communicate across the network, they won’t use the bridges—they’ll use whatever interfaces the Linux host uses to communicate. This is one thing that threw me off: because OVS is itself a Linux process, when OVS needs to communicate across the network it will use the Linux network stack to do so. In this scenario, then, OVS would not communicate over any configured bridge, but instead using eth2. (This makes perfect sense now, but I recall that it didn’t earlier. Maybe it’s just me.)
In this second scenario, our OVS configuration changes only slightly:
In this case, we’re now leveraging a bond that contains two physical interfaces (eth0 and eth1). (By the way, I have a write-up on configuring OVS and bonds, if you need/want more information.) The eth2 interface still has an IP address assigned and is up and communicating properly. The physical eth3 interface is shutdown.
How does this affect the way in which traffic is handled? It doesn’t, really.Traffic from guest domains will still travel across br0 (since this is the only configured OVS bridge), and traffic from the Linux host—including traffic from OVS itself—will still use whatever interfaces aredetermined by the host’s TCP/IP stack. In this case,that would be eth2.
Let’s look at another OVS configuration, the so-called “isolated bridge”. This is a configuration that is commonly found in implementations using NVP, OpenStack, and others, and it’s a configuration that I recently discussed in my post on GRE tunnels and OVS.
Here’s the configuration:
As with previous configurations, we’ll assume that eth2 is up and operational, and eth3 is shutdown. So how does traffic get directed in this configuration?
Traffic from guest domains attached to br0: This is as before—traffic will go out one of the physical interfaces in the bond, according to the bonding configuration (active-standby, LACP, etc.). Nothing unusual here.
Traffic from the Linux host: As before, traffic from processes on the Linux host will travel outaccording to the host’s TCP/IP stack. There are no changes from previous configurations.
Traffic from guest domains attached to br-int: Now, this is where it gets interesting. Guest domains attached to br-int (named “br-int” because in this configuration the isolated bridge is often called the “integration bridge”)don’t have any physical interfaces they can use; theycan only use the GRE tunnel. Here’s the “gotcha”, so to speak:the GRE tunnel is created and maintained by the OVS process, and thereforeit uses the host’s TCP/IP stack to communicate across the network. Thus, traffic from guest domains attached to br-int would hit the GRE tunnel, which would travel through eth2.
I’ll give you a second to let that sink in.
Ready now? Good! The key to understanding #3 is, in my opinion, understanding that the tunnel (a GRE tunnel in this case, but the same would apply to a VXLAN or STT tunnel) is created and maintained by the OVS process.Thus, because it is created and maintained by a process on the Linux host (OVS itself),the traffic for the tunnel is directed according to the host’s TCP/IP stack and IP routing table(s). In this configuration, the tunnels don’t travel through any of the configured OVS bridges.
Let’s keep ramping up the complexity. For this scenario, we’ll use an OVS configuration that is the same as in the previous scenario:
The difference, this time, is that we’ll assume that eth2 and eth3 are both shutdown. Instead, we’ve assigned an IP address to the br0 interface on bridge br0. OVS internal interfaces, like br0, can appear as “physical” interfaces to the Linux host, and therefore can be assigned IP addresses and used for communication. This is the approach I used in describing how to run host management across OVS.
Here’s how this configuration affects traffic flow:
Traffic from guest domains attached to br0: No change here. Traffic from guest domains attached to br0 will continue to travel across the physical interfaces in the bond (eth0 and eth1, in this case).
Traffic from the Linux host: This time, the only interface that the Linux host has is the br0 internal interface. The br0 internal interface is attached to br0, so all traffic from the Linux host will travel across thephysical interfaces attached to the bond (again, eth0 and eth1).
Traffic from guest domains attached to br-int: BecauseLinux host traffic is directed through br0 by virtue of using the br0 internal interface, this means that tunnel traffic is also directed through br0, as dictated by the Linux host’s TCP/IP stack and IP routing table(s).
As you can see, assigning an IP address to an OVS internal interface has a real impact on the way in which the Linux host directs traffic through OVS. This has both positive and negative impacts:
Let’s take a look at one final scenario.
In this configuration, we’ll use an OVS configuration that is very similar to the configuration I showed in my post on GRE tunnels with OVS:
In this configuration, we have three bridges. br0 uses a bond that contains eth0 and eth1; br1 uses a bond that contains eth2 and eth3; and br-int is an isolated bridge with no physical interfaces. We have two “custom” internal interfaces, mgmt0 (on br0) and tep0 (on br1), to which IP addresses have been assigned and which are successfully communicating across the network. We’ll assume thatmgmt0 and tep0 are on different subnets, and that tep0 is assigned to the 192.168.1.0/24 subnet.
How does traffic flow in this scenario?
Traffic from guest domains attached to br0: The behavior here is as it has been in previous configurations—guest domains attached to br0 will communicate across the physical interfaces in the bond.
Traffic from the Linux host: As it has been in previous scenarios, traffic from the Linux host is driven by the host’s TCP/IP stack and IP routing table(s). Because mgmt0 and tep0 are on different subnets, traffic from the Linux host will go out either br0 (for traffic moving through mgmt0) or br1 (for traffic moving through tep0), and thus will utilize the corresponding physical interfaces in the bonds on those bridges.
Traffic from guest domains attached to br-int: Because the GRE tunnel is on the 192.168.1.0/24 subnet, traffic for the GRE tunnel—which is created and maintained by the OVS process on the Linux host itself—willtravel through tep0, which is attached to br1. Thus, the physical interfaces eth2 and eth3 would be leveraged for the GRE tunnel traffic.
The key takeaway from this post, in my mind, is understanding where traffic originates, and separating the idea of OVS as a switching mechanism (to handle guest domain traffic) as well as a Linux host process itself (to create and maintain tunnels between hosts).
Hopefully this information is helpful. I am, of course, completely open to your comments, questions, and corrections, so feel free to speak up in the comments below. Courteous comments are always welcome!
Commets:
1.
Sascha, I’m the one that called it an isolated bridge, and that’s because it has no physical interfaces associated with it. I apologize if my wording threw you off. The reason the traffic hits the host’s IP stack is because of the tunnel interface. Without the tunnel interface, the bridge would truly be isolated—not able to communicate outside the host at all. The purpose of the tep0 interface is simply to control which NICs the tunnel endpoint uses. Because tep0 is utilized by the host’s IP stack, and because the tunnel interface connects the bridge to the host’s IP stack, that’s what allows the traffic to flow from the isolated bridge through tep0. You could just as easily have used a physical interface for the tunnel endpoint instead of an OVS internal interface.
Lennie, more “complicated” configurations are on the way. First, though, I need to establish the correct base understanding upon which I can build more in-depth configurations that leverage things like VLANs, network namespaces, source routing, and similar. Patience, my friend…patience.
2.
Let’s say the guest has a port called vnet0 which connected to an OVS bridge br-int. And a GRE-tunnel is created called gre0 and it is also connected to br-int.
As you know a switch and a bridge is pretty much the same thing.
The OVS/bridge uses MAC-learning like a normal swich.
When traffic comes onto the bridge from the guest through vnet0, the bridge will look at the forwarding table and might decide that the MAC-address of the destination is on gre0. In that case the traffic is forwarded to gre0.
At gre0 it gets encapsulated with a GRE-header. The GRE-tunnel ishandled by the host.
The host just routes the GRE-tunnel packets to the remote_ip, where it gets unpacked and delivered on an other bridge which will hopefully know what to do with it and deliver it at the right port, which is probably connected to a VM.