"C++Templates The Complete Guide"读书笔记----Chapter 5

"C++Templates The Complete Guide"读书笔记----Chapter 5

1. To access a type name that depends on a template parameter, you have to qualify(޸修改,修饰) the name with a leading typename
//  print elements of an STL container
template  < typename T >
void  printcoll (T  const &  coll)
{
    typename T::const_iterator pos;  
// iterator to iterate over coll
    typename T::const_iterator end(coll.end());  // end position

    
for (pos=coll.begin(); pos!=end; ++pos) {
        std::cout 
<< *pos << ' ';
    }

    std::cout 
<< std::endl;
}

2. Nested classes and member functions can also be templates. One application is the ability to implement generic operations with internal type conversions. However, type checking still occurs.
class  Stack  {
  
private:
    std::deque
<T> elems;   // elements

  
public:
    
void push(T const&);   // push element
    void pop();            // pop element
    T top() const;         // return top element
    bool empty() const {   // return whether the stack is empty
        return elems.empty();
    }


    
// assign stack of elements of type T2
    template <typename T2>
    Stack
<T>& operator= (Stack<T2> const&);
}
;

template 
< typename T >
 template 
< typename T2 >
Stack
< T >&  Stack < T > :: operator =  (Stack < T2 >   const &  op2)
{
    
if ((void*)this == (void*)&op2) {    // assignment to itself?
        return *this;
    }


    Stack
<T2> tmp(op2);              // create a copy of the assigned stack

    elems.clear();                   
// remove existing elements
    while (!tmp.empty()) {           // copy all elements
        elems.push_front(tmp.top());
        tmp.pop();
    }

    
return *this;
}


3. Template versions of assignment operators don't replace default assignment operators

4. You can also use class templates as template parameters, as so-called template template parameters
To use a different internal container for stacks, the application programmer has to specify the element type twice. Thus, to specify the type of the internal container, you have to pass the type of the container and the type of its elements again:
Stack<int,std::vector<int> > vStack; // integer stack that uses a vector
Using template template parameters allows you to declare the Stack class template by spcecifying the type of the container without respecifying the type of its elements:
stack < int , std::vector >  vStack;  //  integer stack the uses a vector
To do this you must specify the second template parameter as a template template parameter.
template  < typename T,
          template 
< typename ELEM >   class  CONT  =  std::deque  >
class  Stack  {
  
private:
    CONT
<T> elems;         // elements

  
public:
    
void push(T const&);   // push element
    void pop();            // pop element
    T top() const;         // return top element
    bool empty() const {   // return whether the stack is empty
        return elems.empty();
    }

}
;
The different is that the second template parameter is declare as being a class template:
template  < typename ELEM >   class  CONT

5. Template template arguments must match exactly. Default template arguments of template template arguments are ignored
The problem in this example is that the std::deque template of the standard library has more than one parameter: the second parameter has a default value, but this is not considered when match std::deque to the CONT parameter.
We can rewrite te class declaration so that the CONT parameter expects containers with two template parameters:
template  < typename T,
          template 
< typename ELEM, 
                    typename ALLOC
=  std::allocator < ELEM >   >
                    
class  CONT  =  std::deque >
class  Stack  {
  
private:
    CONT
<T> elems;         // elements

}
;
 6. By explicitly calling a default constructor, you can make sure that variables and members of templates are initialized by a default value even if they are instantiated with a built-in type.
7.  For string literals there is an array-to-pointer conversion during argument deduction if and only if the parameter is not a reference
Passing string literal arguments for reference parameters of templates sometimes fails in a surprising way.
//  note: reference parameters
template  < typename T >
inline T 
const &  max (T  const &  a, T  const &  b)
{
    
return  a < b  ?  b : a;
}


int  main()
{
    std::
string s;

    ::max(
"apple","peach");   // OK: same type
    ::max("apple","tomato");  // ERROR: different types
    ::max("apple",s);         // ERROR: different types
}
The problem is that string literals have defferent array depending on their lengths.
However, if you declare nonreference parameters, you can substitute them with string literals of different size:
//  note: nonreference parameters
template  < typename T >
inline T max (T a, T b)
{
    
return  a < b  ?  b : a;
}


int  main()
{
    std::
string s;

    ::max(
"apple","peach");   // OK: same type
    ::max("apple","tomato");  // OK: decays to same type
    ::max("apple",s);         // ERROR: different types
}
The explanation for this behavior is that during argument deduction array-to-pointer conversion(often called decay) occurs only if the parameter does not have a reference type.

template  < typename T >
void   ref  (T  const &  x)
{
    std::cout 
<< "x in ref(T const&): "  
              
<< typeid(x).name() << '\n';
}


template 
< typename T >
void  nonref (T x)
{
    std::cout 
<< "x in nonref(T):     "
              
<< typeid(x).name() << '\n';
}


int  main()
{
    
ref("hello");
    nonref(
"hello");
}

the output might be as follows:
x in ref(T const&): char[6]

x in nonref(T): const char *

你可能感兴趣的:("C++Templates The Complete Guide"读书笔记----Chapter 5)