"C++Templates The Complete Guide"读书笔记----Chapter 5
1. To access a type name that depends on a template parameter, you have to qualify(修改,修饰) the name with a leading typename
//
print elements of an STL container
template < typename T >
void printcoll (T const & coll)
{
typename T::const_iterator pos; // iterator to iterate over coll
typename T::const_iterator end(coll.end()); // end position
for (pos=coll.begin(); pos!=end; ++pos) {
std::cout << *pos << ' ';
}
std::cout << std::endl;
}
template < typename T >
void printcoll (T const & coll)
{
typename T::const_iterator pos; // iterator to iterate over coll
typename T::const_iterator end(coll.end()); // end position
for (pos=coll.begin(); pos!=end; ++pos) {
std::cout << *pos << ' ';
}
std::cout << std::endl;
}
2. Nested classes and member functions can also be templates. One application is the ability to implement generic operations with internal type conversions. However, type checking still occurs.
class
Stack
{
private:
std::deque<T> elems; // elements
public:
void push(T const&); // push element
void pop(); // pop element
T top() const; // return top element
bool empty() const { // return whether the stack is empty
return elems.empty();
}
// assign stack of elements of type T2
template <typename T2>
Stack<T>& operator= (Stack<T2> const&);
} ;
template < typename T >
template < typename T2 >
Stack < T >& Stack < T > :: operator = (Stack < T2 > const & op2)
{
if ((void*)this == (void*)&op2) { // assignment to itself?
return *this;
}
Stack<T2> tmp(op2); // create a copy of the assigned stack
elems.clear(); // remove existing elements
while (!tmp.empty()) { // copy all elements
elems.push_front(tmp.top());
tmp.pop();
}
return *this;
}
private:
std::deque<T> elems; // elements
public:
void push(T const&); // push element
void pop(); // pop element
T top() const; // return top element
bool empty() const { // return whether the stack is empty
return elems.empty();
}
// assign stack of elements of type T2
template <typename T2>
Stack<T>& operator= (Stack<T2> const&);
} ;
template < typename T >
template < typename T2 >
Stack < T >& Stack < T > :: operator = (Stack < T2 > const & op2)
{
if ((void*)this == (void*)&op2) { // assignment to itself?
return *this;
}
Stack<T2> tmp(op2); // create a copy of the assigned stack
elems.clear(); // remove existing elements
while (!tmp.empty()) { // copy all elements
elems.push_front(tmp.top());
tmp.pop();
}
return *this;
}
3. Template versions of assignment operators don't replace default assignment operators
4. You can also use class templates as template parameters, as so-called template template parameters
To use a different internal container for stacks, the application programmer has to specify the element type twice. Thus, to specify the type of the internal container, you have to pass the type of the container and the type of its elements again:
Stack<int,std::vector<int> > vStack; // integer stack that uses a vector
Using template template parameters allows you to declare the Stack class template by spcecifying the type of the container without respecifying the type of its elements:
stack
<
int
, std::vector
>
vStack;
//
integer stack the uses a vector
To do this you must specify the second template parameter as a template template parameter.
template
<
typename T,
template < typename ELEM > class CONT = std::deque >
class Stack {
private:
CONT<T> elems; // elements
public:
void push(T const&); // push element
void pop(); // pop element
T top() const; // return top element
bool empty() const { // return whether the stack is empty
return elems.empty();
}
} ;
The different is that the second template parameter is declare as being a class template:
template < typename ELEM > class CONT = std::deque >
class Stack {
private:
CONT<T> elems; // elements
public:
void push(T const&); // push element
void pop(); // pop element
T top() const; // return top element
bool empty() const { // return whether the stack is empty
return elems.empty();
}
} ;
template
<
typename ELEM
>
class
CONT
5. Template template arguments must match exactly. Default template arguments of template template arguments are ignored
The problem in this example is that the std::deque template of the standard library has more than one parameter: the second parameter has a default value, but this is not considered when match std::deque to the CONT parameter.
We can rewrite te class declaration so that the CONT parameter expects containers with two template parameters:
template
<
typename T,
template < typename ELEM,
typename ALLOC = std::allocator < ELEM > >
class CONT = std::deque >
class Stack {
private:
CONT<T> elems; // elements
} ;
6. By explicitly calling a default constructor, you can make sure that variables and members of templates are initialized by a default value even if they are instantiated with a built-in type.
template < typename ELEM,
typename ALLOC = std::allocator < ELEM > >
class CONT = std::deque >
class Stack {
private:
CONT<T> elems; // elements
} ;
7. For string literals there is an array-to-pointer conversion during argument deduction if and only if the parameter is not a reference
Passing string literal arguments for reference parameters of templates sometimes fails in a surprising way.
//
note: reference parameters
template < typename T >
inline T const & max (T const & a, T const & b)
{
return a < b ? b : a;
}
int main()
{
std::string s;
::max("apple","peach"); // OK: same type
::max("apple","tomato"); // ERROR: different types
::max("apple",s); // ERROR: different types
}
The problem is that string literals have defferent array depending on their lengths.
template < typename T >
inline T const & max (T const & a, T const & b)
{
return a < b ? b : a;
}
int main()
{
std::string s;
::max("apple","peach"); // OK: same type
::max("apple","tomato"); // ERROR: different types
::max("apple",s); // ERROR: different types
}
However, if you declare nonreference parameters, you can substitute them with string literals of different size:
//
note: nonreference parameters
template < typename T >
inline T max (T a, T b)
{
return a < b ? b : a;
}
int main()
{
std::string s;
::max("apple","peach"); // OK: same type
::max("apple","tomato"); // OK: decays to same type
::max("apple",s); // ERROR: different types
}
The explanation for this behavior is that during argument deduction array-to-pointer conversion(often called decay) occurs only if the parameter does not have a reference type.
template < typename T >
inline T max (T a, T b)
{
return a < b ? b : a;
}
int main()
{
std::string s;
::max("apple","peach"); // OK: same type
::max("apple","tomato"); // OK: decays to same type
::max("apple",s); // ERROR: different types
}
template
<
typename T
>
void ref (T const & x)
{
std::cout << "x in ref(T const&): "
<< typeid(x).name() << '\n';
}
template < typename T >
void nonref (T x)
{
std::cout << "x in nonref(T): "
<< typeid(x).name() << '\n';
}
int main()
{
ref("hello");
nonref("hello");
}
void ref (T const & x)
{
std::cout << "x in ref(T const&): "
<< typeid(x).name() << '\n';
}
template < typename T >
void nonref (T x)
{
std::cout << "x in nonref(T): "
<< typeid(x).name() << '\n';
}
int main()
{
ref("hello");
nonref("hello");
}
the output might be as follows:
x in ref(T const&): char[6]
x in nonref(T): const char *