给你n棵树,可以用这n棵树围一个圈,然后在圈里面可以养牛,每个牛需要50平方米的空间,问最多可以养多少牛?
其实就是求一个凸包,计算凸包面积,然后除以50,然后就得到答案,直接上模板了。
凸包这一类型的题目差不多,可以作为模板使用,时间复杂度是NlogN。
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> using namespace std; struct POINT { int x,y; double angle; }point[10010],stack[10010]; int n, top; typedef struct POINT Point; //欧氏距离 double Distance(Point p1, Point p2) { return sqrt((double)((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y))); } //叉积 op_sp × op_ep double multily(Point sp, Point ep, Point op) { return (double)((sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.y - op.y)); } //比较函数从小到大 int cmp(const void *a, const void *b) { Point *c = (Point *)a; Point *d = (Point *)b; if (c->angle > d->angle) { return 1; } else if(c->angle < d->angle) { return -1; } else return (c->x * c->x + c->y * c->y) < (d->x * d->x + d->y * d->y) ? -1 : 1; } //求凸包 void Graham_scan() { int i; stack[0] = point[0]; stack[1] = point[1]; stack[2] = point[2]; for (i = 3; i < n; ++ i) { while (multily(point[i], stack[top], stack[top - 1]) > 0) { top --; } stack[++ top] = point[i]; } } //求出凸包的面积 double getArea1() { double sum = 0.0; int i; for (i = 0; i <= top; ++ i) { sum += (double)(stack[i].x * stack[(i + 1) % (top + 1)].y - stack[i].y * stack[(i + 1) % (top + 1)].x); } return sum / 2.0; } int main() { double area1; int i, k; while(scanf("%d", &n) != EOF) { top = 2; k = 0; for (i = 0; i < n; ++ i) { scanf("%d %d", &point[i].x, &point[i].y); } for (i = 1; i < n; ++ i) { if (point[i].y < point[k].y || (point[i].y == point[k].y && point[i].x < point[k].x)) { k = i; } } if (k) { Point tmp = point[0]; point[0] = point[k]; point[k] = tmp; } for (i = 1; i < n; ++ i) { point[i].angle = atan2((double)(point[i].y - point[0].y), (double)(point[i].x - point[0].x)); } qsort(point + 1, n - 1, sizeof(point[0]),cmp); Graham_scan(); area1 = fabs(getArea1()); printf("%d\n", (int)(area1/50.0)); } return 0; }