- 卷积神经网络(CNN)详解:从原理到应用的全景解析
彩旗工作室
人工智能cnn人工智能神经网络卷积神经网络
一、定义与核心特征卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频)设计的深度前馈神经网络,其核心特征包括:局部连接:卷积层神经元仅与输入数据的局部区域连接,减少参数数量;权重共享:同一卷积核在整个输入数据上滑动,增强平移不变性;层级特征提取:从低级特征(边缘、纹理)到高级特征(物体部件)的逐层抽象。二、历史演进与关键突破1960年
- 离线安装tiny cuda nn
GUSONGEN
linux运维服务器
GitHub-NVlabs/tiny-cuda-nn:LightningfastC++/CUDAneuralnetworkframework在mac上递归clonetinycudann仓库gitclone--recurse-submodules-j8https://github.com/NVlabs/tiny-cuda-nn.git打包zip-rtiny-cuda-nn.ziptiny-cuda-
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- Vue Amazing UI插件推荐
前端熊猫
vue.js前端插件推荐
以下是针对VueAmazingUI的综合分析和技术选型建议,结合其技术特性、适用场景及与主流库的对比:一、核心优势解析技术栈轻量高效Vue3+Vite原生支持:充分发挥Vue3的CompositionAPI和Vite的极速构建能力,开发体验流畅。TreeShaking优化:按需引入组件时,最终打包体积显著减小(对比ElementPlus减少约30%),适合对性能敏感的项目。完整的TypeScrip
- 崖山YashanDB:下一代国产分布式数据库的架构革新与行业实践
Lethehong
热点时事数据库架构分布式
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页IT深度知识智能体欢迎使用:深探助手deepGuide网页deepseek智能体目录第一章:YashanDB的崛起背景与战略定位1.1国产数据库的破局时刻1.2YashanDB的差异化定位第二章:核心技术架构解析2.1存储引擎:LSM-Tree的革新设计2.2分布式事务引擎:YTSI协议
- C++ 二叉搜索树代码
qq_43355454
c++算法开发语言
代码一,对应力扣恢复二叉搜索树,代码见下/***Definitionforabinarytreenode.*structTreeNode{*intval;*TreeNode*left;*TreeNode*right;*TreeNode():val(0),left(nullptr),right(nullptr){}*TreeNode(intx):val(x),left(nullptr),right(
- 梯度提升决策树(GBDT)
binggorun
决策树算法机器学习
GBDT(GradientBoostingDecisionTree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫MART(MultipleAdditiveRegressionTree),它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。原理GBDT的核心思想是将多个弱学习器(通常是决策树)组合成一个强大的预测模型。具体
- mysql索引
mysql数据库
mysql索引类型mysql使用innodb引擎的索引实现,看下两种mysql中常用的索引类型B-tree索引谈到mysql的索引,一般指的都是B-tree查询类型全值匹配指的是索引中的所有列匹配匹配最左前缀只使用索引的第一列。全值匹配是它的最严格形式。匹配范围值查找第一列在两个索引之间范围的索引精确匹配某一列而范围匹配另一列也是要按照最左前缀来,就是按照先匹配第一列,再第二列,也可以有第三列,然
- Python爬虫实战010:反爬取机制学习
若北辰
Python爬虫教程python爬虫开发语言
#-*-coding:utf-8-*-"""@ModuleName:demo_001@Function:@Author:@Time:2020/12/28上午11:21"""fromlxmlimportetreeimportpandasaspdimportreimportrandomimporturllibimportrequestsimporttimeimportosimportjson
- treegrid级联勾选或深度级联勾选扩展:两种扩展
zhangpeng455547940
Web开发扩展objectfunctionapiinput
treegrid没有级联勾选,要用怎么办?自己扩展呗~先明确两个概念:1、级联勾选:不包括未加载的子节点2、深度级联勾选:包括未加载的子节点两种思路:1、扩展个新方法cascadeCheck,当需要进行级联勾选时,调用该方法进行级联勾选或不勾选。2、扩展onLoadSuccess方法,添加一个自定义属性:cascadeCheck(级联)或deepCascadeCheck(深度级联),通过监听che
- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- 【力扣hot100】刷题笔记Day13
小涛44
力扣hot100刷题笔记leetcode笔记算法职场和发展数据结构python
前言元宵节快乐~周六在图书馆快乐刷题!继续二叉树543.二叉树的直径-力扣(LeetCode)递归后序classSolution:defdiameterOfBinaryTree(self,root:Optional[TreeNode])->int:self.res=0#记录最长路径#递归求最大深度defdepth(node):ifnotnode:return0l=depth(node.left)#
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- Java基础_18File类【重点】_递归_IO流【重点】
码叔义
java基础java单片机stm32
回顾昨天内容1.TreeSet底层是二叉树会对咱们的存储的数据进行排序从小到大排列存Integer,String存Perosn对象会报错的。Person类不具备排序的功能实现Comparable接口,重写comparaTo2.匿名内部类interfaceA{voidtest();}main{newA(){publicvoidtest(){sout("嘻嘻");}}.test();}4.HashMa
- 代码随想录|二叉树|06翻转二叉树
Paper Clouds
算法数据结构c++leetcode
leetcode:226.翻转二叉树-力扣(LeetCode)题目翻转一棵二叉树。思路整棵树以root节点所处的中轴线为轴进行翻转,我们需要做的就是翻转每一个节点的左右孩子。我们在遍历的过程中进行翻转,那么递归和迭代都是可以做的。递归法递归三部曲(1)确定递归函数的参数和返回值参数就是根节点root,返回的也是根节点,所以是TreeNode型。(2)确定终止条件当前节点为空的时候就返回。(3)递归
- Java小白-Collection集合体系
林深的林
windowspythonlinux
一、Collection集合体系1.核心接口与实现类类型特点实现类底层结构线程安全List有序、可重复、有索引ArrayList动态数组否LinkedList双向链表否Vector动态数组是(同步)Set无序、唯一HashSet哈希表+链表/红黑树否TreeSet红黑树否二、Collection常用API1.添加相关方法方法说明booleanadd(Ee)添加单
- README.md 自动生成目录
小段hy
前端框架
1.安装依赖npminstalltreer-g2.基本用法进入所要生成目录的文件夹终端,输入treer-eREADME.md生成的文件目录3.此时会把所有的子目录都生成,如果去掉,可以利用正则表达式,如treer-eREADME.md-i/.js/二、treer用法介绍1.指定目录默认的目录为当前的路径,可以通过-d传入指定的路径treer-d2.导出结果可以将结果导到文件中treer-e3.忽略
- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- git subtree 管理项目子模块
芥末的无奈
gitgitsubtree
使用场景当项目越来越庞大之后,不可避免的要拆分成多个子模块,我们希望各个子模块有独立的版本管理,并且由专门的人去维护,这时候我们可以使用git的subtree功能常用命令gitsubtreeadd--prefix=--squash添加子仓库gitsubtreepull--prefix=--squash拉取更新子仓库gitsubtreepush--prefix=推送修改到子仓库如何使用1.创建带su
- git subtree 高频使用方法
NickDeCodes
gitgitgithub
subtree高频使用方法官网添加新的子项目查看子项目的差异使用子项目克隆存储库引入超级项目更新改变分支引入子项目更新对子项目进行更改将更改推送到子项目存储库高效配置添加新的子项目subtreegitsubtreeadd--prefix=example-submodulehttps://github.com/githubtraining/example-submodulemaster--squas
- 《Natural Actor-Critic》译读笔记
songyuc
笔记
《NaturalActor-Critic》摘要本文提出了一种新型的强化学习架构,即自然演员-评论家(NaturalActor-Critic)。Theactor的更新通过使用Amari的自然梯度方法进行策略梯度的随机估计来实现,而评论家则通过线性回归同时获得自然策略梯度和价值函数的附加参数。本文展示了使用自然策略梯度的actor改进特别有吸引力,因为这些梯度与所选策略表示的坐标框架无关,并且比常规策
- 知识蒸馏论文精选——《Graph-Free Knowledge Distillation for Graph Neural Networks 》
宇直不会放弃
GKD-Outputlayer人工智能数据挖掘机器学习深度学习神经网络cnnpytorch
(GFKD)无图知识蒸馏《Graph-FreeKnowledgeDistillationforGraphNeuralNetworks》2021作者是XiangDeng和ZhongfeiZhang,来自纽约州立大学宾汉姆顿分校论文地址见文末摘要知识蒸馏(KnowledgeDistillation,KD)通过强制学生网络模仿在训练数据上预训练老师网络的输出,从而将知识从老师网络转移到学生网络。然而,在
- 二叉树-将二叉树展开为链表
Vacant Seat
链表数据结构二叉树java
114.将二叉树展开为链表给你二叉树的根结点root,请你将它展开为一个单链表:展开后的单链表应该同样使用TreeNode,其中right子指针指向链表中下一个结点,而左子指针始终为null。展开后的单链表应该与二叉树先序遍历顺序相同。输入:二叉树的根结点输出:空?思路:前序遍历之后再赋值,左边置为空,右边为单链表中的结点使用递归classSolution{Listlist=newArrayLis
- MySQL精选面试题
米二
mysql数据库oracle
文章目录1.sql优化2.数据库优化3.悲观锁和乐观锁4.共享锁与排他锁5.索引的目的是什么?6.B+Tree对比BTree的优点:6.1磁盘读写代价更低6.2查询速度更稳定且能存更多索引6.3B+树叶子节点两两相连增快区间访问7.聚簇索引和非聚簇索引的区别8.forupdate9.间隙锁GapLocks10.临键锁Next-KeyLocks11.MVCC是什么?1.sql优化对查询进行优化,应尽
- 【算法】BST的非递归插入,删除,查询
孤邑
数据结构数据结构笔记学习c++
BST所谓二叉搜索树(BinarySearchTree,简称BST)大家应该都不陌生,它是一种特殊的二叉树。对于二叉树上的每一个节点,如果满足左孩子的值>classBSTree{private:/*data*///节点定义structNode{Node(Tdata=T()):data_(data),left_(nullptr),right_(nullptr){}Tdata_;Node*left_;
- 4 「小试牛刀」- 实现最基本的 React SSR
zz_jesse
reactvuejavascriptpythonjs
导读本节标题:「小试牛刀」-实现最基本的ReactSSR本节主旨:完成最简单的ssr,体验组件直出的过程本节配套代码:https://github.com/Bigerfe/koa-react-ssr/tree/better/packages/base-react-ssr正文上一节我们介绍了reactssr的核心原理。这一节我们就来实操一下,实现一个单纯的reactssr功能,这有点像是写一个hel
- 数据库索引管理:不用的索引应该直接删除吗?
后端数据库mysql
一、索引的本质与价值:双刃剑的深层解析数据库索引的本质是通过B+Tree、Hash等数据结构实现的快速检索机制,其核心价值在于将时间复杂度从O(n)降为O(logn)。但索引的维护成本常常被低估:写操作成本倍增:每次INSERT操作需更新所有相关索引,某电商平台实测显示,每增加一个索引,TPS下降8-12%存储空间占用指数增长:复合索引的存储需求遵循组合数公式C(n,k),当字段数n增加时,空间消
- 数据库索引管理:不用的索引应该直接删除吗?
后端数据库mysql
一、索引的本质与价值:双刃剑的深层解析数据库索引的本质是通过B+Tree、Hash等数据结构实现的快速检索机制,其核心价值在于将时间复杂度从O(n)降为O(logn)。但索引的维护成本常常被低估:写操作成本倍增:每次INSERT操作需更新所有相关索引,某电商平台实测显示,每增加一个索引,TPS下降8-12%存储空间占用指数增长:复合索引的存储需求遵循组合数公式C(n,k),当字段数n增加时,空间消
- ONNX GraphSurgeon详细介绍
Lntano__y
模型部署算法
ONNXGraphSurgeon(ONNX-GS)是一个用于操作和修改ONNX(OpenNeuralNetworkExchange)模型图的Python库。它允许开发者在ONNX模型的图结构中进行修改、优化、插入节点、删除节点以及其他图结构操作,是在深度学习推理部署过程中非常有用的工具。ONNXGraphSurgeon常用于TensorRT中,用来优化和调整ONNX模型,以便于模型可以高效地在GP
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数