转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
时运不济,继续水CF。。。
A:Reconnaissance
枚举
B:Borze
模拟
C:Flea
先算出最多可以多少个,然后 统计一下有多少个位置
LL n , m , s; int main () { #ifndef ONLINE_JUDGE freopen ("input.txt" , "r" , stdin); // freopen ("output.txt" , "w" , stdout); #endif cin >> n >> m >> s; LL w = (n - 1) / s; LL h = (m - 1) / s; LL cnt = (w + 1) * (h + 1); LL a = min (s - 1 , (m - 1) % s); LL b = min (s - 1 , (n - 1) % s); cout << (a + 1) * (b + 1) * cnt << endl; return 0; }
枚举每个位置,枚举半径,然后排序,输出。。
E:Hide and seek
简单几何
首先判断能否直接看到目标,判断条件是不和墙相交 且 (不和镜子相交或者和镜子平行)
然后再判断能否反射看到,做目标点关于镜子的反射点,然后连接源点和反射点,判断与镜子是否有交点,否则不可达。
然后再判断下入射光线和反射光线是否会和墙相交。
const double eps = 1e-8; int dcmp (double d) { return d < -eps ? -1 : d > eps; } struct Point { double x , y; Point () {} Point (double _x , double _y):x(_x),y(_y){} void input () { scanf ("%lf %lf" , &x , &y); } inline Point operator - (const Point &p) const { return Point (x - p.x , y - p.y); } inline Point operator + (const Point &p) const { return Point (x + p.x , y + p.y); } inline double operator * (const Point &p) const { return x * p.y - y * p.x; } inline double operator / (const Point &p) const { return x * p.x + y * p.y; } inline Point operator * (const double d) const { return Point (x * d , y * d); } inline Point operator / (const double d) const { return Point (x / d , y / d); } inline Point turnLeft () { return Point (-y , x); } }s , e; struct Line { Point a , b; Line () {} Line (Point _a , Point _b):a(_a),b(_b){} void input () { a.input (); b.input (); } inline double operator * (const Point &p) const { return (b - a) * (p - a); } inline double operator / (const Point &p) const { return (p - a) / (p - b); } inline int SegCrossSeg (const Line &v) { int d1 = dcmp ((*this) * v.a); int d2 = dcmp ((*this) * v.b); int d3 = dcmp (v * a); int d4 = dcmp (v * b); if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2; return ((d1 == 0 && dcmp ((*this) / v.a) <= 0) || (d2 == 0 && dcmp ((*this) / v.b) <= 0) || (d3 == 0 && dcmp (v / a) <= 0) || (d4 == 0 && dcmp (v / b) <= 0)); } inline bool parallel (Line v) { return !dcmp ((b - a) * (v.b - v.a)); } inline Point CrossPoint (const Line &v) { double s1 = v * a , s2 = v * b; return (a * s2 - b * s1) / (s2 - s1); } inline Point PointToLine (const Point &p) { return CrossPoint (Line (p , p + (a - b).turnLeft ())); } inline Point SymPoint (const Point &p) { return PointToLine (p) * 2 - p; } }wall , mirror; int main () { #ifndef ONLINE_JUDGE freopen ("input.txt" , "r" , stdin); // freopen ("output.txt" , "w" , stdout); #endif s.input ();e.input (); wall.input ();mirror.input (); if (wall.SegCrossSeg (Line (s , e)) == 0 ) { if (mirror.SegCrossSeg (Line (s , e)) == 0 || mirror.parallel (Line (s , e))) { puts ("YES"); return 0; } } Point t = mirror.SymPoint (e); if (mirror.SegCrossSeg (Line (s , t)) >= 1) { Point p = mirror.CrossPoint (Line (s , t)); if (wall.SegCrossSeg (Line (s , p)) == 0 && wall.SegCrossSeg (Line (p , e)) == 0) { puts ("YES"); return 0; } } puts ("NO"); return 0; }