题目如下:
There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
Note:
The solution is guaranteed to be unique.
分析如下:
如图,可行的方案就是, 从index = 4的时候开始行动。
对于 N个 station中的每一个点,index 取值范围是[0, N-1],将这些Index都作为一个可能的起始点,沿着圆圈进行探测。
如果绕行一圈的每个station i 都能保证gas[i] + accumulated >= cost[i], 则可以继续进行到下一个点。其中accumulated 表示目前邮箱里还剩下的没有用完的。
这样的做法是O(N²),提交发现超时了。
优化的办法是,考虑一下选择起始的station的时候,有限选择gas[i]大且cost[i]小的station。这样首先按照gas[i] - cost[i]进行降序排序。然后根据这个顺序对应的station顺序一次进行探测。
我的代码:
struct gas_index { int gas_left; int index; }; bool my_sort_order (struct gas_index a, struct gas_index b) { return (a.gas_left > b.gas_left); }; class Solution { public: int canCompleteCircuit(vector<int> &gas, vector<int> &cost) { vector<struct gas_index> gas_minus_cost; for (int i = 0; i < gas.size(); ++i) { struct gas_index gi; gi.gas_left = gas[i] - cost[i]; gi.index = i; gas_minus_cost.push_back(gi); } std::sort(gas_minus_cost.begin(), gas_minus_cost.end(), my_sort_order); for (int k = 0; k < gas_minus_cost.size(); ++k) { int i = gas_minus_cost[k].index; if (cost[i] > gas[i]) continue; int accumulated_gas = 0, j = 0, current = i; for (j = 0; j < gas.size(); ++j) { if (current >= gas.size()) //之前错写为了 if (current > gas.size()) current = current % gas.size(); if ((accumulated_gas + gas[current]) < cost[current]) break; else accumulated_gas = accumulated_gas + gas[current] - cost[current]; ++current; } if (j == gas.size() && ((accumulated_gas + gas[current]) >= cost[current])) // 如果只写if (j == gas.size()是错误的 return i; } return -1; } };