混合高斯模型(Mixtures of Gaussians)
多值高斯分布,用到了期望最大化算法(Expectation-Maximization)来进行密度估计。
说一下EM的思想:
第一步猜测隐含类别变量,第二步是更新调整参数,以获得最大的似然估计。
关于算法的详细思想和推导,请见本文的参考文献。
以下是程序的代码:
function varargout = gmm(X, K_or_centroids) %============================================================ %Expectation-Maximization iteration implementation of % Gaussian Mixture Model. % % PX = GMM(X,K_OR_CENTROIDS) % [PX MODEL] = GMM(X,K_OR_CENTROIDS) % % - X: N-by-D data matrix. % - K_OR_CENTROIDS: either K indicating thenumber of % components or a K-by-D matrix indicatingthe % choosing of the initial K centroids. % % - PX: N-by-K matrix indicating theprobability of each % component generating each point. % - MODEL: a structure containing theparameters for a GMM: % MODEL.Miu: a K-by-D matrix. % MODEL.Sigma: a D-by-D-by-K matrix. % MODEL.Pi: a 1-by-K vector. %============================================================ threshold = 1e-15; [N, D] = size(X); if isscalar(K_or_centroids) K = K_or_centroids; % randomly pick centroids rndp = randperm(N); centroids = X(rndp(1:K), :); else K = size(K_or_centroids, 1); centroids = K_or_centroids; end %initial values [pMiu pPi pSigma] = init_params(); Lprev = -inf; while true Px = calc_prob(); % new value for pGamma pGamma = Px .* repmat(pPi, N, 1); pGamma = pGamma ./ repmat(sum(pGamma,2), 1, K); % new value for parameters of each Component Nk = sum(pGamma, 1); pMiu = diag(1./Nk) * pGamma' * X; pPi = Nk/N; for kk = 1:K Xshift = X-repmat(pMiu(kk, :), N,1); pSigma(:, :, kk) = (Xshift' *... (diag(pGamma(:, kk)) * Xshift))/ Nk(kk); end % check for convergence L = sum(log(Px*pPi')); if L-Lprev < threshold break; end Lprev = L; end if nargout == 1 varargout = {Px}; else model = []; model.Miu = pMiu; model.Sigma = pSigma; model.Pi = pPi; varargout = {Px, model}; end function [pMiu pPi pSigma] = init_params() pMiu = centroids; pPi = zeros(1, K); pSigma = zeros(D, D, K); % hard assign x to each centroids distmat = repmat(sum(X.*X, 2), 1, K) +... repmat(sum(pMiu.*pMiu, 2)', N, 1) -... 2*X*pMiu'; [dummy labels] = min(distmat, [], 2); for k=1:K Xk = X(labels == k, :); pPi(k) = size(Xk, 1)/N; pSigma(:, :, k) = cov(Xk); end end function Px = calc_prob() Px = zeros(N, K); for k = 1:K Xshift = X-repmat(pMiu(k, :), N,1); inv_pSigma = inv(pSigma(:, :, k)); tmp = sum((Xshift*inv_pSigma) .*Xshift, 2); coef = (2*pi)^(-D/2) *sqrt(det(inv_pSigma)); Px(:, k) = coef * exp(-0.5*tmp); end end end
以下是驱动程序:
% MATLAB自带混合高斯模型函数 % gm =gmdistribution.fit(X,2,'Options',options); mu1 = [1 2]; sigma1 = [3 .2; .2 2]; mu2 = [-1 -2]; sigma2 = [2 0; 0 1]; X =[mvnrnd(mu1,sigma1,200);mvnrnd(mu2,sigma2,100)]; scatter(X(:,1),X(:,2),10,'ko'); PX = gmm(X,2); [~,idx]=max(PX,[],2); cluster1 = (idx == 1); cluster2 = (idx == 2); scatter(X(cluster1,1),X(cluster1,2),10,'r+'); hold on scatter(X(cluster2,1),X(cluster2,2),10,'bo'); legend('Cluster 1','Cluster 2','Location','NW')
以下是测试样例:
参考文献:
http://cs229.stanford.edu/
http://www.cnblogs.com/jerrylead/archive/2012/05/08/2489725.html
http://www.cnblogs.com/CBDoctor/archive/2011/11/06/2236286.html