A. POJ 1236 Network of Schoolst
题意:有n个学校,每个学校都可以给它名单上的学校发送软件。然后现在问你至少需要给多少个学校发送软件。
思路:求出强连通分量的个数,每一个强连通分量需要一个软件。
#include<time.h> #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> //#include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> #define ll long long #define REP(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) #define REPP(i,a,b,t) for(int (i)=(a);(i)<=(b);(i)+=(t)) #define rep(i,a,b) for(int (i)=(a);(i)>=(b);(i)--) #define repp(i,a,b,t) for(int (i)=(a);(i)>=(b);(i)-=(t)) #define PII pair<int,int> #define fst first #define snd second #define MP make_pair #define PB push_back #define RI(x) scanf("%d",&(x)) #define RII(x,y) scanf("%d%d",&(x),&(y)) #define RIII(x,y,z) scanf("%d%d%d",&(x),&(y),&(z)) #define DRI(x) int (x);scanf("%d",&(x)) #define DRII(x,y) int (x),(y);scanf("%d%d",&(x),&(y)) #define DRIII(x,y,z) int (x),(y),(z);scanf("%d%d%d",&(x),&(y),&(z)) #define RS(x) scanf("%s",x) #define RSS(x,y) scanf("%s%s",x,y) #define DRS(x) char x[maxn];scanf("%s",x) #define DRSS(x,y) char x[maxn],y[maxn];scanf("%s%s",x,y) #define MS0(a) memset((a),0,sizeof((a))) #define MS1(a) memset((a),-1,sizeof((a))) #define MS(a,b) memset((a),(b),sizeof((a))) #define ALL(v) v.begin(),v.end() #define SZ(v) (int)(v).size() using namespace std; const int MAXN=200; int n,cnt,u,v,head,index,t1,t2; bool edge[MAXN][MAXN]; bool instack[MAXN]; int stack[MAXN]; int low[MAXN]; int dfn[MAXN]; int belong[MAXN]; int in[MAXN]; int out[MAXN]; void init() { head=0; index=cnt=1; memset(edge,0,sizeof(edge)); memset(instack,0,sizeof(instack)); memset(stack,0,sizeof(stack)); memset(low,0,sizeof(low)); memset(dfn,-1,sizeof(dfn)); memset(belong,0,sizeof(belong)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); for(int i=0;i<=n;i++) dfn[i]=-1; } void targan(int u) { low[u]=dfn[u]=index++; stack[++head]=u; instack[u]=true; for(int v=1;v<=n;v++) { if(!edge[u][v]) continue; if(dfn[v]==-1) { targan(v); low[u]=min(low[u],low[v]); } else if(instack[v]) low[u]=min(low[u],dfn[v]); } if(low[u]==dfn[u]) { int temp; while(1) { temp=stack[head--]; belong[temp]=cnt; instack[temp]=false; if(temp==u) break; } cnt++; } } int main() { //freopen("in.txt","r",stdin); while(scanf("%d",&n)!=EOF) { init(); for(int i=1;i<=n;i++) { while(scanf("%d",&v)&&v) edge[i][v]=true; } for(int i=1;i<=n;i++) if(dfn[i]==-1) targan(i); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(belong[i]!=belong[j]&&edge[i][j]) in[belong[j]]++,out[belong[i]]++; for(int i=1;i<cnt;i++) { if(!in[i]) t1++; if(!out[i]) t2++; } if(cnt==2) printf("1\n0\n"); else printf("%d\n%d\n",t1,max(t1,t2)); } return 0; }
B. UVA 315 Network
题意:有n个点,其中一些点删除后那么可能某些点之间就不能通信了,问你这样的点有多少个。
思路:求割点的裸题。
#include<time.h> #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> #define ll long long #define REP(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) #define REPP(i,a,b,t) for(int (i)=(a);(i)<=(b);(i)+=(t)) #define rep(i,a,b) for(int (i)=(a);(i)>=(b);(i)--) #define repp(i,a,b,t) for(int (i)=(a);(i)>=(b);(i)-=(t)) #define PII pair<int,int> #define fst first #define snd second #define MP make_pair #define PB push_back #define RI(x) scanf("%d",&(x)) #define RII(x,y) scanf("%d%d",&(x),&(y)) #define RIII(x,y,z) scanf("%d%d%d",&(x),&(y),&(z)) #define DRI(x) int (x);scanf("%d",&(x)) #define DRII(x,y) int (x),(y);scanf("%d%d",&(x),&(y)) #define DRIII(x,y,z) int (x),(y),(z);scanf("%d%d%d",&(x),&(y),&(z)) #define RS(x) scanf("%s",x) #define RSS(x,y) scanf("%s%s",x,y) #define DRS(x) char x[maxn];scanf("%s",x) #define DRSS(x,y) char x[maxn],y[maxn];scanf("%s%s",x,y) #define MS0(a) memset((a),0,sizeof((a))) #define MS1(a) memset((a),-1,sizeof((a))) #define MS(a,b) memset((a),(b),sizeof((a))) #define ALL(v) v.begin(),v.end() #define SZ(v) (int)(v).size() using namespace std; const int MAXN=10010; const int MAXM=100010; int n,u,v,cnt,inde; char ch; int dfn[MAXN]; int low[MAXN]; vector<int> G[MAXN]; bool cut[MAXN]; bool g[110][110]; void Targan(int u,int pre) { low[u]=dfn[u]=++inde; int son=0; for(int i=0;i<G[u].size();i++) { int v=G[u][i]; if(v==pre) continue; if(dfn[v]==-1) { son++; Targan(v,u); low[u]=min(low[u],low[v]); if(u!=pre&&low[v]>=dfn[u]) cut[u]=true; } else low[u]=min(low[u],dfn[v]); } if(u==pre&&son>1) cut[u]=true; } int main() { //freopen("in.txt","r",stdin); while(scanf("%d",&n)&&n) { memset(cut,0,sizeof(cut)); memset(g,0,sizeof(g)); for(int i=0;i<=n;i++) G[i].clear(); cnt=inde=0; while(scanf("%d",&u)&&u) { while(1) { scanf("%d",&v); g[u][v]=g[v][u]=true; ch=getchar(); if(ch=='\n') break; } } for(int i=0;i<=n;i++) for(int j=0;j<=n;j++) if(g[i][j]&&i!=j) G[i].push_back(j); for(int i=0;i<=n;i++) dfn[i]=-1; for(int i=1;i<=n;i++) if(dfn[i]==-1) Targan(i,i); for(int i=1;i<=n;i++) if(cut[i]) cnt++; printf("%d\n",cnt); } return 0; }
C. UVA 796 Critical Links
题意:按字典序输出所有的割边。
#include<time.h> #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> #define ll long long #define REP(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) #define REPP(i,a,b,t) for(int (i)=(a);(i)<=(b);(i)+=(t)) #define rep(i,a,b) for(int (i)=(a);(i)>=(b);(i)--) #define repp(i,a,b,t) for(int (i)=(a);(i)>=(b);(i)-=(t)) #define PII pair<int,int> #define fst first #define snd second #define MP make_pair #define PB push_back #define RI(x) scanf("%d",&(x)) #define RII(x,y) scanf("%d%d",&(x),&(y)) #define RIII(x,y,z) scanf("%d%d%d",&(x),&(y),&(z)) #define DRI(x) int (x);scanf("%d",&(x)) #define DRII(x,y) int (x),(y);scanf("%d%d",&(x),&(y)) #define DRIII(x,y,z) int (x),(y),(z);scanf("%d%d%d",&(x),&(y),&(z)) #define RS(x) scanf("%s",x) #define RSS(x,y) scanf("%s%s",x,y) #define DRS(x) char x[maxn];scanf("%s",x) #define DRSS(x,y) char x[maxn],y[maxn];scanf("%s%s",x,y) #define MS0(a) memset((a),0,sizeof((a))) #define MS1(a) memset((a),-1,sizeof((a))) #define MS(a,b) memset((a),(b),sizeof((a))) #define ALL(v) v.begin(),v.end() #define SZ(v) (int)(v).size() using namespace std; const int MAXN=10010; const int MAXM=100010; struct Edge{ int u,v,id; }e[MAXM]; int n,m,u,v,cnt,inde,id; char ch; int dfn[MAXN]; int low[MAXN]; bool g[MAXN][MAXN]; vector<Edge> G[MAXN]; bool cut[MAXM]; void init() { memset(e,0,sizeof(e)); memset(g,0,sizeof(g)); memset(cut,0,sizeof(cut)); for(int i=0;i<n;i++) G[i].clear(); cnt=inde=id=0; } void Targan(int u,int pre) { low[u]=dfn[u]=++inde; for(int i=0;i<G[u].size();i++) { Edge e=G[u][i]; if(e.v==pre) continue; if(dfn[e.v]==-1) { Targan(e.v,u); low[u]=min(low[u],low[e.v]); if(low[e.v]>dfn[u]) { cut[e.id]=true; cnt++; } } else low[u]=min(low[u],dfn[e.v]); } } int main() { //freopen("in.txt","r",stdin); while(scanf("%d",&n)!=EOF) { init(); for(int i=0;i<n;i++) { scanf("%d (%d)",&u,&m); for(int j=0;j<m;j++) { scanf("%d",&v); g[u][v]=true; } } for(int i=0;i<n;i++) for(int j=i+1;j<n;j++) { if(g[i][j]) { G[i].push_back({i,j,id}); G[j].push_back({j,i,id}); e[id]={i,j,id}; id++; } } for(int i=0;i<n;i++) dfn[i]=-1; for(int i=0;i<n;i++) if(dfn[i]==-1) Targan(i,i); printf("%d critical links\n",cnt); for(int i=0;i<id;i++) if(cut[i]) printf("%d - %d\n",e[i].u,e[i].v); puts(""); } return 0; }
D. POJ 3694 Network
题意:有一个图,有Q次加边,要求你输出每次加边后的桥/割边的个数。
思路:对于每次输入,求他们的最近公共祖先,而求最近公共祖先的过程中遇到的割点去掉。然后再删去一条割边。
#include<time.h> #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> #define ll long long #define REP(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) #define REPP(i,a,b,t) for(int (i)=(a);(i)<=(b);(i)+=(t)) #define rep(i,a,b) for(int (i)=(a);(i)>=(b);(i)--) #define repp(i,a,b,t) for(int (i)=(a);(i)>=(b);(i)-=(t)) #define PII pair<int,int> #define fst first #define snd second #define MP make_pair #define PB push_back #define RI(x) scanf("%d",&(x)) #define RII(x,y) scanf("%d%d",&(x),&(y)) #define RIII(x,y,z) scanf("%d%d%d",&(x),&(y),&(z)) #define DRI(x) int (x);scanf("%d",&(x)) #define DRII(x,y) int (x),(y);scanf("%d%d",&(x),&(y)) #define DRIII(x,y,z) int (x),(y),(z);scanf("%d%d%d",&(x),&(y),&(z)) #define RS(x) scanf("%s",x) #define RSS(x,y) scanf("%s%s",x,y) #define DRS(x) char x[maxn];scanf("%s",x) #define DRSS(x,y) char x[maxn],y[maxn];scanf("%s%s",x,y) #define MS0(a) memset((a),0,sizeof((a))) #define MS1(a) memset((a),-1,sizeof((a))) #define MS(a,b) memset((a),(b),sizeof((a))) #define ALL(v) v.begin(),v.end() #define SZ(v) (int)(v).size() using namespace std; const int MAXN=110000; const int MAXM=220000; struct Edge{ int u,v,id; }e[MAXM]; int n,m,u,v,cnt,inde,q; char ch; int DFN[MAXN]; int dfn[MAXN]; int low[MAXN]; int pre[MAXN]; //bool g[MAXN][MAXN]; vector<int> G[MAXN]; bool cut[MAXN]; void init() { memset(e,0,sizeof(e)); //memset(g,0,sizeof(g)); memset(cut,0,sizeof(cut)); memset(pre,0,sizeof(pre)); memset(DFN,0,sizeof(DFN)); for(int i=0;i<n;i++) G[i].clear(); cnt=inde=0; } void Targan(int u) { low[u]=dfn[u]=++inde; DFN[u]=DFN[pre[u]]+1; for(int i=0;i<G[u].size();i++) { int v=G[u][i]; if(dfn[v]==-1) { pre[v]=u; Targan(v); low[u]=min(low[u],low[v]); if(low[v]>dfn[u]) { cnt++; cut[v]=true; } } else if(v!=pre[u]) low[u]=min(low[u],dfn[v]); } } void lca(int u,int v) { if(DFN[u]<DFN[v]) swap(u,v); while(DFN[u]>DFN[v]) { if(cut[u]) cnt--,cut[u]=false; u=pre[u]; } while(u!=v) { if(cut[u]) cnt--,cut[u]=false; if(cut[v]) cnt--,cut[v]=false; u=pre[u]; v=pre[v]; } } int main() { //freopen("in.txt","r",stdin); int icase=0; while(scanf("%d%d",&n,&m)&&n&&m) { ++icase; init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); G[u].push_back(v); G[v].push_back(u); } for(int i=0;i<=n;i++) dfn[i]=-1; for(int i=1;i<=n;i++) if(dfn[i]==-1) Targan(i); printf("Case %d:\n",icase); scanf("%d",&q); while(q--) { scanf("%d%d",&u,&v); lca(u,v); printf("%d\n",cnt); } puts(""); } return 0; }
E. POJ 3177 Redundant Paths
题意:给你一个图,问你至少需要加多少条边可以使得图没有桥/割边。
思路:缩联通分量成点,然后统计度数为2的点,输出(点数+1)/2.
#include<time.h> #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> //#include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> #define ll long long #define REP(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) #define REPP(i,a,b,t) for(int (i)=(a);(i)<=(b);(i)+=(t)) #define rep(i,a,b) for(int (i)=(a);(i)>=(b);(i)--) #define repp(i,a,b,t) for(int (i)=(a);(i)>=(b);(i)-=(t)) #define PII pair<int,int> #define fst first #define snd second #define MP make_pair #define PB push_back #define RI(x) scanf("%d",&(x)) #define RII(x,y) scanf("%d%d",&(x),&(y)) #define RIII(x,y,z) scanf("%d%d%d",&(x),&(y),&(z)) #define DRI(x) int (x);scanf("%d",&(x)) #define DRII(x,y) int (x),(y);scanf("%d%d",&(x),&(y)) #define DRIII(x,y,z) int (x),(y),(z);scanf("%d%d%d",&(x),&(y),&(z)) #define RS(x) scanf("%s",x) #define RSS(x,y) scanf("%s%s",x,y) #define DRS(x) char x[maxn];scanf("%s",x) #define DRSS(x,y) char x[maxn],y[maxn];scanf("%s%s",x,y) #define MS0(a) memset((a),0,sizeof((a))) #define MS1(a) memset((a),-1,sizeof((a))) #define MS(a,b) memset((a),(b),sizeof((a))) #define ALL(v) v.begin(),v.end() #define SZ(v) (int)(v).size() using namespace std; const int MAXN=6000; const int MAXM=25000; struct Edge{ int u,v,id; bool cut; }e[MAXM]; int n,m,u,v,cnt,inde,top,block; char ch; int dfn[MAXN]; int low[MAXN]; int pre[MAXN]; //bool g[MAXN][MAXN]; vector<Edge> G[MAXN]; bool cut[MAXN]; bool instack[MAXN]; int stack[MAXN]; int belong[MAXN]; int in[MAXN]; void init() { memset(e,0,sizeof(e)); //memset(g,0,sizeof(g)); memset(cut,0,sizeof(cut)); memset(pre,0,sizeof(pre)); memset(stack,0,sizeof(stack)); memset(belong,0,sizeof(belong)); memset(in,0,sizeof(in)); memset(instack,0,sizeof(instack)); //memset(DFN,0,sizeof(DFN)); for(int i=0;i<=n;i++) G[i].clear(); cnt=inde=0; } void Targan(int u) { low[u]=dfn[u]=++inde; stack[top++]=u; instack[u]=true; for(int i=0;i<G[u].size();i++) { Edge en=G[u][i]; if(en.v==pre[u]) continue; if(dfn[en.v]==-1) { pre[en.v]=u; Targan(en.v); low[u]=min(low[u],low[en.v]); if(low[en.v]>dfn[u]) { e[en.id].cut=true; e[en.id^1].cut=true; } } else if(instack[en.v]) low[u]=min(low[u],dfn[en.v]); } if(low[u]==dfn[u]) { block++; int temp; do{ temp=stack[--top]; instack[temp]=false; belong[temp]=block; }while(temp!=u); } } /* void lca(int u,int v) { if(DFN[u]<DFN[v]) swap(u,v); while(DFN[u]>DFN[v]) { if(cut[u]) cnt--,cut[u]=false; u=pre[u]; } while(u!=v) { if(cut[u]) cnt--,cut[u]=false; if(cut[v]) cnt--,cut[v]=false; u=pre[u]; v=pre[v]; } } */ int main() { //freopen("in.txt","r",stdin); while(scanf("%d%d",&n,&m)!=EOF) { init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); G[u].push_back({u,v,i*2,false}); G[v].push_back({v,u,i*2+1,false}); e[2*i]={u,v,i*2,false}; e[2*i+1]={v,u,i*2+1,false}; } for(int i=0;i<=n;i++) dfn[i]=-1; for(int i=1;i<=n;i++) if(dfn[i]==-1) Targan(i); for(int u=1;u<=n;u++) for(int i=0;i<G[u].size();i++) if(e[G[u][i].id].cut) in[belong[u]]++; for(int i=1;i<=block;i++) if(in[i]==1) cnt++; printf("%d\n",(cnt+1)/2); } return 0; }
F. HDU 4612 Warm up
题意:给你一个图,注意可能有重边,你可以在图中加一条边,问你加入一条边后最少的桥边树。
思路:先缩联通分量成点,然后统计出桥边的条数,再两遍bfs,找出直径,然后减去直径上桥边的数量,即为所求。
#pragma comment(linker, "/STACK:102400000,102400000") #include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; typedef pair<int,int> P; const int MAXN=200005; const int MAXM=2000005; struct Edge{ int u,v,id; }; vector <Edge> G[MAXN]; vector <int> G2[MAXN]; queue<P> q; int n,m,u,v,index,tag,top,deep,cnt,block; int dfn[MAXN]; int low[MAXN]; int cut[MAXN]; int vis[MAXN]; int stack[MAXN]; int belong[MAXN]; void init() { memset(dfn,0,sizeof(dfn)); memset(cut,0,sizeof(cut)); memset(low,0,sizeof(low)); memset(belong,0,sizeof(belong)); for(int i=0;i<MAXN;i++) G[i].clear(),G2[i].clear(); cnt=index=top=block=0; } void Targan(int u,int la) { low[u]=dfn[u]=++index; stack[++top]=u; for(int i=0;i<G[u].size();i++) { Edge e=G[u][i]; if(e.id==la) continue; if(!dfn[e.v]) { Targan(e.v,e.id); low[u]=min(low[u],low[e.v]); if(low[e.v]>dfn[u]) { cnt++; cut[e.v]=true; } } else low[u]=min(low[u],dfn[e.v]); } if(low[u]==dfn[u]) { block++; do{ v=stack[top--]; belong[v]=block; }while(u!=v); } } void bfs(int flag) { deep=0; while(!q.empty()) q.pop(); memset(vis,0,sizeof(vis)); q.push({flag,0}); vis[flag]=true; while(!q.empty()) { P p=q.front(); if(p.second>=deep) { deep=p.second; tag=p.first; } q.pop(); for(int i=0;i<G2[p.first].size();i++) { int v=G2[p.first][i]; if(!vis[v]) { vis[v]=true; q.push({v,p.second+1}); } } } } int main() { //freopen("in.txt","r",stdin); while(scanf("%d%d",&n,&m)&&n&&m) { init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); G[u].push_back({u,v,i}); G[v].push_back({v,u,i}); } for(int i=1;i<=n;i++) if(!dfn[i]) Targan(i,-1); for(int u=1;u<=n;u++) { for(int v=0;v<G[u].size();v++) { if(belong[u]!=belong[G[u][v].v]) { G2[belong[u]].push_back(belong[G[u][v].v]); G2[belong[G[u][v].v]].push_back(belong[u]); } } } bfs(1); bfs(tag); printf("%d\n",cnt-deep); } }
G. HDU 4635 Strongly connected
题意:给你一个不是强连通的图,你最多加入多少条边,使得这个图依旧不是强连通的。
思路:缩联通分量成点,然后找出只有入度或者只有出度且度数最少的点,设这个点所包含的节点数为cnt,那么我们加边之后的结果应该是n^n-n-m-cnt*(n-cnt)。减n是去掉自环,减m是去掉已有的边,减去cnt*(n-cnt)是因为这个点跟其他的点就不能再连边了,不然就只有一个强连通分量了。
#pragma comment(linker, "/STACK:102400000,102400000") #include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; typedef pair<int,int> P; const int MAXN=200005; const int MAXM=2000005; struct Edge{ int u,v,id; }; vector <Edge> G[MAXN]; vector <int> G2[MAXN]; queue<P> q; int n,m,u,v,index,tag,top,deep,cnt,block; int dfn[MAXN]; int low[MAXN]; int cut[MAXN]; int vis[MAXN]; int stack[MAXN]; int belong[MAXN]; void init() { memset(dfn,0,sizeof(dfn)); memset(cut,0,sizeof(cut)); memset(low,0,sizeof(low)); memset(belong,0,sizeof(belong)); for(int i=0;i<MAXN;i++) G[i].clear(),G2[i].clear(); cnt=index=top=block=0; } void Targan(int u,int la) { low[u]=dfn[u]=++index; stack[++top]=u; for(int i=0;i<G[u].size();i++) { Edge e=G[u][i]; if(e.id==la) continue; if(!dfn[e.v]) { Targan(e.v,e.id); low[u]=min(low[u],low[e.v]); if(low[e.v]>dfn[u]) { cnt++; cut[e.v]=true; } } else low[u]=min(low[u],dfn[e.v]); } if(low[u]==dfn[u]) { block++; do{ v=stack[top--]; belong[v]=block; }while(u!=v); } } void bfs(int flag) { deep=0; while(!q.empty()) q.pop(); memset(vis,0,sizeof(vis)); q.push({flag,0}); vis[flag]=true; while(!q.empty()) { P p=q.front(); if(p.second>=deep) { deep=p.second; tag=p.first; } q.pop(); for(int i=0;i<G2[p.first].size();i++) { int v=G2[p.first][i]; if(!vis[v]) { vis[v]=true; q.push({v,p.second+1}); } } } } int main() { //freopen("in.txt","r",stdin); while(scanf("%d%d",&n,&m)&&n&&m) { init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); G[u].push_back({u,v,i}); G[v].push_back({v,u,i}); } for(int i=1;i<=n;i++) if(!dfn[i]) Targan(i,-1); for(int u=1;u<=n;u++) { for(int v=0;v<G[u].size();v++) { if(belong[u]!=belong[G[u][v].v]) { G2[belong[u]].push_back(belong[G[u][v].v]); G2[belong[G[u][v].v]].push_back(belong[u]); } } } bfs(1); bfs(tag); printf("%d\n",cnt-deep); } }
I. HDU 4738 Caocao's Bridges
题意:告诉你n个岛,岛与岛之间有m座桥。周瑜希望让诸葛亮去炸掉桥边。而桥上有士兵,诸葛亮带领的士兵必须要大于等于桥上的士兵,问你最少需要派遣多少士兵。
思路:求出权值最小的割边就好。但是要注意如果桥上没人,要输出0而不是1。
#pragma comment(linker, "/STACK:102400000,102400000") #include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; typedef pair<int,int> P; const int MAXN=200005; const int MAXM=2000005; struct Edge{ int u,v,id; }; vector <Edge> G[MAXN]; vector <int> G2[MAXN]; queue<P> q; int n,m,u,v,index,tag,top,deep,cnt,block; int dfn[MAXN]; int low[MAXN]; int cut[MAXN]; int vis[MAXN]; int stack[MAXN]; int belong[MAXN]; void init() { memset(dfn,0,sizeof(dfn)); memset(cut,0,sizeof(cut)); memset(low,0,sizeof(low)); memset(belong,0,sizeof(belong)); for(int i=0;i<MAXN;i++) G[i].clear(),G2[i].clear(); cnt=index=top=block=0; } void Targan(int u,int la) { low[u]=dfn[u]=++index; stack[++top]=u; for(int i=0;i<G[u].size();i++) { Edge e=G[u][i]; if(e.id==la) continue; if(!dfn[e.v]) { Targan(e.v,e.id); low[u]=min(low[u],low[e.v]); if(low[e.v]>dfn[u]) { cnt++; cut[e.v]=true; } } else low[u]=min(low[u],dfn[e.v]); } if(low[u]==dfn[u]) { block++; do{ v=stack[top--]; belong[v]=block; }while(u!=v); } } void bfs(int flag) { deep=0; while(!q.empty()) q.pop(); memset(vis,0,sizeof(vis)); q.push({flag,0}); vis[flag]=true; while(!q.empty()) { P p=q.front(); if(p.second>=deep) { deep=p.second; tag=p.first; } q.pop(); for(int i=0;i<G2[p.first].size();i++) { int v=G2[p.first][i]; if(!vis[v]) { vis[v]=true; q.push({v,p.second+1}); } } } } int main() { //freopen("in.txt","r",stdin); while(scanf("%d%d",&n,&m)&&n&&m) { init(); for(int i=0;i<m;i++) { scanf("%d%d",&u,&v); G[u].push_back({u,v,i}); G[v].push_back({v,u,i}); } for(int i=1;i<=n;i++) if(!dfn[i]) Targan(i,-1); for(int u=1;u<=n;u++) { for(int v=0;v<G[u].size();v++) { if(belong[u]!=belong[G[u][v].v]) { G2[belong[u]].push_back(belong[G[u][v].v]); G2[belong[G[u][v].v]].push_back(belong[u]); } } } bfs(1); bfs(tag); printf("%d\n",cnt-deep); } }