Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
/** * Definition for an interval. * struct Interval { * int start; * int end; * Interval() : start(0), end(0) {} * Interval(int s, int e) : start(s), end(e) {} * }; */ class Solution { public: vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) { // Start typing your C/C++ solution below // DO NOT write int main() function vector<Interval> result; int nSize = intervals.size(); if (nSize == 0) { result.push_back(newInterval); return result; } int idx = 0; Interval val; for (; idx < nSize; ++idx) { val = intervals[idx]; if (newInterval.start > val.end) { result.push_back(val); } // 无相交区域 else if (newInterval.end < val.start) { result.push_back(newInterval); while(idx < nSize) result.push_back(intervals[idx++]); } else { newInterval.start = newInterval.start < val.start ? newInterval.start : val.start; newInterval.end = newInterval.end > val.end ? newInterval.end : val.end; } } if (result.size() == 0 || result.back().end < newInterval.start) { result.push_back(newInterval); } return result; } };