题目:压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
分段弱正交匹配追踪(StagewiseWeak OMP)可以说是StOMP的一种改进算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求。我们称这里的原子选择方式为“弱选择”(Weak Selection),详见文献[1]的第3部分“III. STAGEWISE WEAK ELEMENTSELECTION”。以下内容结构安排包括代码都参考了《压缩感知重构算法之分段正交匹配追踪(StOMP)》。
0、符号说明如下:
压缩观测y=Φx,其中y为观测所得向量M×1,x为原信号N×1(M<<N)。x一般不是稀疏的,但在某个变换域Ψ是稀疏的,即x=Ψθ,其中θ为K稀疏的,即θ只有K个非零项。此时y=ΦΨθ,令A=ΦΨ,则y=Aθ。
(1) y为观测所得向量,大小为M×1
(2)x为原信号,大小为N×1
(3)θ为K稀疏的,是信号在x在某变换域的稀疏表示
(4) Φ称为观测矩阵、测量矩阵、测量基,大小为M×N
(5) Ψ称为变换矩阵、变换基、稀疏矩阵、稀疏基、正交基字典矩阵,大小为N×N
(6)A称为测度矩阵、传感矩阵、CS信息算子,大小为M×N
上式中,一般有K<<M<<N,后面三个矩阵各个文献的叫法不一,以后我将Φ称为测量矩阵、将Ψ称为稀疏矩阵、将A称为传感矩阵。
注意:这里的稀疏表示模型为x=Ψθ,所以传感矩阵A=ΦΨ;而有些文献中稀疏模型为θ=Ψx,而一般Ψ为Hermite矩阵(实矩阵时称为正交矩阵),所以Ψ-1=ΨH (实矩阵时为Ψ-1=ΨT),即x=ΨHθ,所以传感矩阵A=ΦΨH,例如沙威的OMP例程中就是如此。
1、SWOMP重构算法流程:
2、分段弱正交匹配追踪(SWOMP)Matlab代码(CS_SWOMP.m)
代码基本与StOMP.m一致,不同之处只是修改了门限,为了测试α=1时的重构效果,门限比较时由StOMP的大于改为了大于等于。
function [ theta ] = CS_SWOMP( y,A,S,alpha ) %CS_SWOMP Summary of this function goes here %Version: 1.0 written by jbb0523 @2015-05-11 % Detailed explanation goes here % y = Phi * x % x = Psi * theta % y = Phi*Psi * theta % 令 A = Phi*Psi, 则y=A*theta % S is the maximum number of SWOMP iterations to perform % alpha is the threshold parameter % 现在已知y和A,求theta % Reference:Thomas Blumensath,Mike E. Davies.Stagewise weak gradient % pursuits[J].IEEE Transactions on Signal Processing,2009,57(11):4333-4346. if nargin < 4 alpha = 0.5;%alpha范围(0,1),默认值为0.5 end if nargin < 3 S = 10;%S默认值为10 end [y_rows,y_columns] = size(y); if y_rows<y_columns y = y';%y should be a column vector end [M,N] = size(A);%传感矩阵A为M*N矩阵 theta = zeros(N,1);%用来存储恢复的theta(列向量) Pos_theta = [];%用来迭代过程中存储A被选择的列序号 r_n = y;%初始化残差(residual)为y for ss=1:S%最多迭代S次 product = A'*r_n;%传感矩阵A各列与残差的内积 sigma = max(abs(product)); Js = find(abs(product)>=alpha*sigma);%选出大于阈值的列 Is = union(Pos_theta,Js);%Pos_theta与Js并集 if length(Pos_theta) == length(Is) if ss==1 theta_ls = 0;%防止第1次就跳出导致theta_ls无定义 end break;%如果没有新的列被选中则跳出循环 end %At的行数要大于列数,此为最小二乘的基础(列线性无关) if length(Is)<=M Pos_theta = Is;%更新列序号集合 At = A(:,Pos_theta);%将A的这几列组成矩阵At else%At的列数大于行数,列必为线性相关的,At'*At将不可逆 if ss==1 theta_ls = 0;%防止第1次就跳出导致theta_ls无定义 end break;%跳出for循环 end %y=At*theta,以下求theta的最小二乘解(Least Square) theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解 %At*theta_ls是y在At列空间上的正交投影 r_n = y - At*theta_ls;%更新残差 if norm(r_n)<1e-6%Repeat the steps until r=0 break;%跳出for循环 end end theta(Pos_theta)=theta_ls;%恢复出的theta end
3、SWOMP单次重构测试代码
以下测试代码基本与OMP单次重构测试代码一样。代码中“Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵”并不像StOMP一样要求一定要除以sqrt(M),这也是SWOMP对StOMP的最大改进之处。
%压缩感知重构算法测试 clear all;close all;clc; M = 128;%观测值个数 N = 256;%信号x的长度 K = 30;%信号x的稀疏度 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y %% 恢复重构信号x tic theta = CS_SWOMP( y,A); x_r = Psi * theta;% x=Psi * theta toc %% 绘图 figure; plot(x_r,'k.-');%绘出x的恢复信号 hold on; plot(x,'r');%绘出原信号x hold off; legend('Recovery','Original') fprintf('\n恢复残差:'); norm(x_r-x)%恢复残差
运行结果如下:(信号为随机生成,所以每次结果均不一样)
1)图:
2)Command windows
Elapsedtime is 0.093673 seconds.
恢复残差:
ans=
2.9037e-014
4、门限参数α、测量数M与重构成功概率关系曲线绘制例程代码
因为文献[1]中对门限参数α给出的是一个取值范围,所以有必要仿真α取不同值时的重构效果。以下的代码是基于StOMP相应的测试代码修改的,基本结构一样,只是α的测试值共10个,而在StOMP中ts的测试值共6个。
clear all;close all;clc; %% 参数配置初始化 CNT = 1000;%对于每组(K,M,N),重复迭代次数 N = 256;%信号x的长度 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta alpha_set = 0.1:0.1:1; K_set = [4,12,20,28,36];%信号x的稀疏度集合 Percentage = zeros(N,length(K_set),length(alpha_set));%存储恢复成功概率 %% 主循环,遍历每组(alpha,K,M,N) tic for tt = 1:length(alpha_set) alpha = alpha_set(tt); for kk = 1:length(K_set) K = K_set(kk);%本次稀疏度 %M没必要全部遍历,每隔5测试一个就可以了 M_set=2*K:5:N; PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率 for mm = 1:length(M_set) M = M_set(mm);%本次观测值个数 fprintf('alpha=%f,K=%d,M=%d\n',alpha,K,M); P = 0; for cnt = 1:CNT %每个观测值个数均运行CNT次 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的 Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y theta = CS_SWOMP(y,A,10,alpha);%恢复重构信号theta x_r = Psi * theta;% x=Psi * theta if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功 P = P + 1; end end PercentageK(mm) = P/CNT*100;%计算恢复概率 end Percentage(1:length(M_set),kk,tt) = PercentageK; end end toc save SWOMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来 %% 绘图 for tt = 1:length(alpha_set) S = ['-ks';'-ko';'-kd';'-kv';'-k*']; figure; for kk = 1:length(K_set) K = K_set(kk); M_set=2*K:5:N; L_Mset = length(M_set); plot(M_set,Percentage(1:L_Mset,kk,tt),S(kk,:));%绘出x的恢复信号 hold on; end hold off; xlim([0 256]); legend('K=4','K=12','K=20','K=28','K=36'); xlabel('Number of measurements(M)'); ylabel('Percentage recovered'); title(['Percentage of input signals recovered correctly(N=256,alpha=',... num2str(alpha_set(tt)),')(Gaussian)']); end for kk = 1:length(K_set) K = K_set(kk); M_set=2*K:5:N; L_Mset = length(M_set); S = ['-ks';'-ko';'-kd';'-k*';'-k+';'-kx';'-kv';'-k^';'-k<';'-k>']; figure; for tt = 1:length(alpha_set) plot(M_set,Percentage(1:L_Mset,kk,tt),S(tt,:));%绘出x的恢复信号 hold on; end hold off; xlim([0 256]); legend('alpha=0.1','alpha=0.2','alpha=0.3','alpha=0.4','alpha=0.5',... 'alpha=0.6','alpha=0.7','alpha=0.8','alpha=0.9','alpha=1.0'); xlabel('Number of measurements(M)'); ylabel('Percentage recovered'); title(['Percentage of input signals recovered correctly(N=256,K=',... num2str(K),')(Gaussian)']); end
本程序在联想ThinkPadE430C笔记本(4GBDDR3内存,i5-3210)上运行共耗时8430.877154秒(时间较长,运行时可以干点别的事情了),程序中将所有数据均通过“save SWOMPMtoPercentage1000”存储了下来,以后可以再对数据进行分析,只需“load SWOMPMtoPercentage1000”即可。
程序运行结束会出现10+5=11幅图,前10幅图分别是α分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0时的测量数M与重构成功概率关系曲线(类似于OMP此部分,这里只是对每一个不同的α画出一幅图),后5幅图是分别将稀疏度K为4、12、20、28、32时将十种α取值的测量数M与重构成功概率关系曲线绘制在一起以比较α对重构结果的影响。
以下是α分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和 1.0时的测量数M与重构成功概率关系曲线:以下是稀疏度K为4、12、20、28、32时将十种α取值的测量数M与重构成功概率关系曲线放在一起的五幅图:
对比可以看出,总体上讲α=0.5时效果较好,α=0.6在稀疏度较小时比α=0.5还好,但在K=36时不如α=0.5时。因此把α默认取为0.5即可。
5、结语
对比StOMP中ts=2.4与SWOMP中α=0.5的情况:
clear all;close all;clc; load StOMPMtoPercentage1000; PercentageStOMP = Percentage; S = ['-ks';'-ko';'-kd';'-kv';'-k*']; figure; for kk = 1:length(K_set) K = K_set(kk); M_set=2*K:5:N; L_Mset = length(M_set); %ts_set = 2:0.2:3;第3个为2.4 plot(M_set,Percentage(1:L_Mset,kk,3),S(kk,:));%绘出x的恢复信号 hold on; end load SWOMPMtoPercentage1000; PercentageSWOMP = Percentage; S = ['-rs';'-ro';'-rd';'-rv';'-r*']; for kk = 1:length(K_set) K = K_set(kk); M_set=2*K:5:N; L_Mset = length(M_set); %alpha_set = 0.1:0.1:1;第5个为0.5 plot(M_set,Percentage(1:L_Mset,kk,5),S(kk,:));%绘出x的恢复信号 hold on; end hold off; xlim([0 256]); legend('StK=4','StK=12','StK=20','StK=28','StK=36',... 'SWK=4','SWK=12','SWK=20','SWK=28','SWK=36'); xlabel('Number of measurements(M)'); ylabel('Percentage recovered'); title(['Percentage of input signals recovered correctly(N=256,ts=2.4,\alpha=0.5)(Gaussian)']);运行结果如下:
注意,本程序需要已运行完StOMP测试程序,保存了数据文件StOMPMtoPercentage1000.mat。从图中可以看出StOMP要略好于SWOMP,但是StOMP的门限设置由残差决定,这对测量矩阵提出了要求,而SWOMP的门限设置则对测量矩阵要求较低。
【参考文献】
[1] ThomasBlumensath,Mike E. Davies.Stagewiseweak gradient pursuits[J].IEEE Transactions onSignal Processing,2009,57(11):4333-4346.
[2]杨真真,杨震,孙林慧.信号压缩重构的正交匹配追踪类算法综述[J]. 信号处理,2013,29(4):486-496.