PKU3356 字符串 DP

AGTC

Time Limit: 1000MS

 

Memory Limit: 65536K

Total Submissions: 4930

 

Accepted: 1904

Description

Let x and y be two strings over some finite alphabet A . We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C


| | |       |   |   | |


A G T * C * T G A C G C

Deletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C


|  |  |        |     |     |  |


A  G  T  C  T  G  *  A  C  G  C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm .

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y .

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y .

Sample Input

10 AGTCTGACGC

11 AGTAAGTAGGC

Sample Output

4

 

 

 

设有长度 l1 l2 的字符串 s1 s2,res[i][j] s1 的前 i 个字符变成 s2 的前 j 个字符所需的最少操作数 , 转移方程为 :

if (s1[i]==s2[j]) res[i+1][j+1]=min(res[i][j],res[i+1][j]+1,res[i][j+1]+1);

else res[i+1][j+1]=min(res[i][j]+1,res[i+1][j]+1,res[i][j+1]+1);

(s1[i]==s2[j]) ,res[i+1][j+1] 可以直接取 res[i][j], 也可以从 res[i+1][j] 1 得到 , 也可以从 res[i][j+1] 得到 , 取其中的最小者便是当前的最优解 .

(s1[i]!=s2[j]) 时相似 .

 

代码如下 :

 

 

#include<stdio.h> #include<string.h> #define MAXN 1005 int min(int a,int b,int c) { if (a>b) return b>c?c:b; return a>c?c:a; } int res[MAXN][MAXN]; int main() { int l1,l2,i,j; char s1[MAXN],s2[MAXN]; while (scanf("%d%s",&l1,s1)!=EOF) { scanf("%d%s",&l2,s2); for (i=0;i<=l1;++i) res[i][0]=i; for (i=0;i<=l2;++i) res[0][i]=i; for (i=0;i<l1;++i) for (j=0;j<l2;++j) if (s1[i]==s2[j]) res[i+1][j+1]=min(res[i][j],res[i+1][j]+1,res[i][j+1]+1); else res[i+1][j+1]=min(res[i][j]+1,res[i+1][j]+1,res[i][j+1]+1); printf("%d/n",res[l1][l2]); } return 0; }

你可能感兴趣的:(c,String,Integer,input,output)