LSH算法参考资料

LSH(Location Sensitive Hash),即位置敏感哈希函数。与一般哈希函数不同的是位置敏感性,也就是散列前的相似点经过哈希之后,也能够在一定程度上相似,并且具有一定的概率保证。 相似性检索在各种领域特别是在视频、音频、图像、文本等含有丰富特征信息领域中的应用变得越来越重要。丰富的特征信息一般用高维向量表示,由此相似性检索一般通过K近邻或近似近邻查询来实现。一个理想的相似性检索一般需要满足以下四个条件:

1. 高准确性。即返回的结果和线性查找的结果接近。

2. 空间复杂度低。即占用内存空间少。理想状态下,空间复杂度随数据集呈线性增长,但不会远大于数据集的大小。

3. 时间复杂度低。检索的时间复杂度最好为O(1)或O(logN)。

4. 支持高维度。能够较灵活地支持高维数据的检索。

传统主要方法是基于空间划分的算法——tree类似算法,如R-tree,Kd-tree,SR-tree。这种算法返回的结果是精确的,但是这种算法在高维数据集上的时间效率并不高。实验[1]指出维度高于10之后,基于空间划分的算法时间复杂度反而不如线性查找。LSH方法能够在保证一定程度上的准确性的前提下,时间和空间复杂度得到降低,并且能够很好地支持高维数据的检索

 

参考链接:
http://www.jiahenglu.net/NSFC/LSH.html

 

你可能感兴趣的:(LSH算法参考资料)