(一)理论基础
更多理论以后再补充,或者参考书籍
1、trident是什么?
Trident is a high-level abstraction for doing realtime computing on top of Storm. It allows you to seamlessly intermix high throughput (millions of messages per second), stateful stream processing with low latency distributed querying. If you're familiar with high level batch processing tools like Pig or Cascading, the concepts of Trident will be very familiar – Trident has joins, aggregations, grouping, functions, and filters. In addition to these, Trident adds primitives for doing stateful, incremental processing on top of any database or persistence store. Trident has consistent, exactly-once semantics, so it is easy to reason about Trident topologies.
简单的说,trident是storm的更高层次抽象,相对storm,它主要提供了2个方面的好处:
(1)提供了更高层次的抽象,将常用的count,sum等封装成了方法,可以直接调用,不需要自己实现。
(2)提供了一次原语,如groupby等。
(3)提供了事务支持,可以保证数据均处理且只处理了一次。
2、trident每次处理消息均为batch为单位,即一次处理多个元组。
3、事务类型
关于事务类型,有2个比较容易混淆的概念:spout的事务类型以及事务状态。
它们都有3种类型,分别为:事务型、非事务型和透明事务型。
(1)spout
spout的类型指定了由于下游出现问题导致元组需要重放时,应该怎么发送元组。
事务型spout:重放时能保证同一个批次发送同一批元组。可以保证每一个元组都被发送且只发送一个,且同一个批次所发送的元组是一样的。
非事务型spout:没有任何保障,发完就算。
透明事务型spout:同一个批次发送的元组有可能不同的,它可以保证每一个元组都被发送且只发送一次,但不能保证重放时同一个批次的数据是一样的。这对于部分失效的情况尤其有用,假如以kafka作为spout,当一个topic的某个分区失效时,可以用其它分区的数据先形成一个批次发送出去,如果是事务型spout,则必须等待那个分区恢复后才能继续发送。
这三种类型可以分别通过实现ITransactionalSpout、ITridentSpout、IOpaquePartitionedTridentSpout接口来定义。
(2)state
state的类型指定了如果将storm的中间输出或者最终输出持久化到某个地方(如内存),当某个批次的数据重放时应该如果更新状态。state对于下游出现错误的情况尤其有用。
事务型状态:同一批次tuple提供的结果是相同的。
非事务型状态:没有回滚能力,更新操作是永久的。
透明事务型状态:更新操作基于先前的值,这样由于这批数据发生变化,对应的结果也会发生变化。透明事务型状态除了保存当前数据外,还要保存上一批数据,当数据重放时,可以基于上一批数据作更新。
package org.ljh.tridentdemo; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.LocalDRPC; import backtype.storm.StormSubmitter; import backtype.storm.generated.StormTopology; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import storm.trident.TridentState; import storm.trident.TridentTopology; import storm.trident.operation.BaseFunction; import storm.trident.operation.TridentCollector; import storm.trident.operation.builtin.Count; import storm.trident.operation.builtin.FilterNull; import storm.trident.operation.builtin.MapGet; import storm.trident.operation.builtin.Sum; import storm.trident.testing.FixedBatchSpout; import storm.trident.testing.MemoryMapState; import storm.trident.tuple.TridentTuple; public class TridentWordCount { public static class Split extends BaseFunction { @Override public void execute(TridentTuple tuple, TridentCollector collector) { String sentence = tuple.getString(0); for (String word : sentence.split(" ")) { collector.emit(new Values(word)); } } } public static StormTopology buildTopology(LocalDRPC drpc) { FixedBatchSpout spout = new FixedBatchSpout(new Fields("sentence"), 3, new Values( "the cow jumped over the moon"), new Values( "the man went to the store and bought some candy"), new Values( "four score and seven years ago"), new Values("how many apples can you eat"), new Values( "to be or not to be the person")); spout.setCycle(true); //创建拓扑对象 TridentTopology topology = new TridentTopology(); //这个流程用于统计单词数据,结果将被保存在wordCounts中 TridentState wordCounts = topology.newStream("spout1", spout) .parallelismHint(16) .each(new Fields("sentence"), new Split(), new Fields("word")) .groupBy(new Fields("word")) .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count")).parallelismHint(16); //这个流程用于查询上面的统计结果 topology.newDRPCStream("words", drpc) .each(new Fields("args"), new Split(), new Fields("word")) .groupBy(new Fields("word")) .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count")) .each(new Fields("count"), new FilterNull()) .aggregate(new Fields("count"), new Sum(), new Fields("sum")); return topology.build(); } public static void main(String[] args) throws Exception { Config conf = new Config(); conf.setMaxSpoutPending(20); if (args.length == 0) { LocalDRPC drpc = new LocalDRPC(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("wordCounter", conf, buildTopology(drpc)); for (int i = 0; i < 100; i++) { System.out.println("DRPC RESULT: " + drpc.execute("words", "cat the dog jumped")); Thread.sleep(1000); } } else { conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(args[0], conf, buildTopology(null)); } } }
FixedBatchSpout spout = new FixedBatchSpout(new Fields("sentence"), 3, new Values( "the cow jumped over the moon"), new Values( "the man went to the store and bought some candy"), new Values( "four score and seven years ago"), new Values("how many apples can you eat"), new Values( "to be or not to be the person")); spout.setCycle(true);
TridentState wordCounts = topology.newStream("spout1", spout) .parallelismHint(16) .each(new Fields("sentence"), new Split(), new Fields("word")) .groupBy(new Fields("word")) .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count")).parallelismHint(16);
topology.newDRPCStream("words", drpc) .each(new Fields("args"), new Split(), new Fields("word")) .groupBy(new Fields("word")) .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count")) .each(new Fields("count"), new FilterNull()) .aggregate(new Fields("count"), new Sum(), new Fields("sum"));
public static class Split extends BaseFunction { @Override public void execute(TridentTuple tuple, TridentCollector collector) { String sentence = tuple.getString(0); for (String word : sentence.split(" ")) { collector.emit(new Values(word)); } } }
public static void main(String[] args) throws Exception { Config conf = new Config(); conf.setMaxSpoutPending(20); if (args.length == 0) { LocalDRPC drpc = new LocalDRPC(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("wordCounter", conf, buildTopology(drpc)); for (int i = 0; i < 100; i++) { System.out.println("DRPC RESULT: " + drpc.execute("words", "cat the dog jumped")); Thread.sleep(1000); } } else { conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(args[0], conf, buildTopology(null)); } }
package com.netease.sytopology; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.Arrays; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import storm.kafka.BrokerHosts; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import storm.kafka.trident.OpaqueTridentKafkaSpout; import storm.kafka.trident.TridentKafkaConfig; import storm.trident.TridentTopology; import storm.trident.operation.BaseFunction; import storm.trident.operation.TridentCollector; import storm.trident.operation.builtin.Count; import storm.trident.testing.MemoryMapState; import storm.trident.tuple.TridentTuple; import backtype.storm.Config; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.generated.StormTopology; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; /* * 本类完成以下内容 */ public class SyTopology { public static final Logger LOG = LoggerFactory.getLogger(SyTopology.class); private final BrokerHosts brokerHosts; public SyTopology(String kafkaZookeeper) { brokerHosts = new ZkHosts(kafkaZookeeper); } public StormTopology buildTopology() { TridentKafkaConfig kafkaConfig = new TridentKafkaConfig(brokerHosts, "ma30", "storm"); kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); // TransactionalTridentKafkaSpout kafkaSpout = new // TransactionalTridentKafkaSpout(kafkaConfig); OpaqueTridentKafkaSpout kafkaSpout = new OpaqueTridentKafkaSpout(kafkaConfig); TridentTopology topology = new TridentTopology(); // TridentState wordCounts = topology.newStream("kafka4", kafkaSpout). each(new Fields("str"), new Split(), new Fields("word")).groupBy(new Fields("word")) .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count")).parallelismHint(16); // .persistentAggregate(new HazelCastStateFactory(), new Count(), // new Fields("aggregates_words")).parallelismHint(2); return topology.build(); } public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException { String kafkaZk = args[0]; SyTopology topology = new SyTopology(kafkaZk); Config config = new Config(); config.put(Config.TOPOLOGY_TRIDENT_BATCH_EMIT_INTERVAL_MILLIS, 2000); String name = args[1]; String dockerIp = args[2]; config.setNumWorkers(9); config.setMaxTaskParallelism(5); config.put(Config.NIMBUS_HOST, dockerIp); config.put(Config.NIMBUS_THRIFT_PORT, 6627); config.put(Config.STORM_ZOOKEEPER_PORT, 2181); config.put(Config.STORM_ZOOKEEPER_SERVERS, Arrays.asList(dockerIp)); StormSubmitter.submitTopology(name, config, topology.buildTopology()); } static class Split extends BaseFunction { public void execute(TridentTuple tuple, TridentCollector collector) { String sentence = tuple.getString(0); for (String word : sentence.split(",")) { try { FileWriter fw = new FileWriter(new File("/home/data/test/ma30/ma30.txt"),true); fw.write(word); fw.flush(); fw.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } collector.emit(new Values(word)); } } } }
OpaqueTridentKafkaSpout kafkaSpout = new OpaqueTridentKafkaSpout(kafkaConfig);
其中ma30是订阅的topic名称。
(4)计数后将状态写入MemoryMapState
提交拓扑:
storm jar target/sytopology2-0.0.1-SNAPSHOT.jar com.netease.sytopology.SyTopology 192.168.172.98:2181/kafka test3 192.168.172.98
此时可以在/home/data/test/ma30/ma30.txt看到split的结果